幼儿饰品瑜伽美体用品微软
投稿投诉
微软创意
爱情通信
用品婚姻
爱好看病
美体软件
影音星座
瑜伽周边
星座办公
饰品塑形
搞笑减肥
幼儿两性
智家潮品

小学数学知识点总结,帮孩子收藏好

  今天为大家准备了21种数学技法,建议家长收藏。
  01hr归一问题
  【含义】
  在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
  【数量关系】
  总量份数1份数量
  1份数量所占份数所求几份的数量
  另一总量(总量份数)所求份数
  【解题思路和方法】
  先求出单一量,以单一量为标准,求出所要求的数量。
  例1
  买5支铅笔要0。6元钱,买同样的铅笔16支,需要多少钱?
  解
  (1)买1支铅笔多少钱?0。650。12(元)
  (2)买16支铅笔需要多少钱?0。12161。92(元)
  列成综合算式0。65160。12161。92(元)
  答:需要1。92元。
  例2
  3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?
  解
  (1)1台拖拉机1天耕地多少公顷?903310(公顷)
  (2)5台拖拉机6天耕地多少公顷?1056300(公顷)
  列成综合算式9033561030300(公顷)
  答:5台拖拉机6天耕地300公顷。
  例3
  5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
  解
  (1)1辆汽车1次能运多少吨钢材?100545(吨)
  (2)7辆汽车1次能运多少吨钢材?5735(吨)
  (3)105吨钢材7辆汽车需要运几次?105353(次)
  列成综合算式105(100547)3(次)
  答:需要运3次。
  02hr归总问题
  【含义】
  解题时,常常先找出总数量,然后再根据其它条件算出所求的问题,叫归总问题。所谓总数量是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
  【数量关系】
  1份数量份数总量
  总量1份数量份数
  总量另一份数另一每份数量
  【解题思路和方法】
  先求出总数量,再根据题意得出所求的数量。
  例1
  服装厂原来做一套衣服用布3。2米,改进裁剪方法后,每套衣服用布2。8米。原来做791套衣服的布,现在可以做多少套?
  解
  (1)这批布总共有多少米?3。27912531。2(米)
  (2)现在可以做多少套?2531。22。8904(套)
  列成综合算式3。27912。8904(套)
  答:现在可以做904套。
  例2
  小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
  解
  (1)《红岩》这本书总共多少页?2412288(页)
  (2)小明几天可以读完《红岩》?288368(天)
  列成综合算式2412368(天)
  答:小明8天可以读完《红岩》。
  例3
  食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
  解
  (1)这批蔬菜共有多少千克?50301500(千克)
  (2)这批蔬菜可以吃多少天?1500(5010)25(天)
  列成综合算式5030(5010)15006025(天)
  答:这批蔬菜可以吃25天。
  03hr和差问题
  【含义】
  已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
  【数量关系】
  大数(和差)2
  小数(和差)2
  【解题思路和方法】
  简单的题目可以直接套用公式;复杂的题目变通后再用公式。
  例1
  甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
  解
  甲班人数(986)252(人)
  乙班人数(986)246(人)
  答:甲班有52人,乙班有46人。
  例2
  长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
  解
  长(182)210(厘米)
  宽(182)28(厘米)
  长方形的面积10880(平方厘米)
  答:长方形的面积为80平方厘米。
  例3
  有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
  解
  甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(3230)2千克,且甲是大数,丙是小数。由此可知
  甲袋化肥重量(222)212(千克)
  丙袋化肥重量(222)210(千克)
  乙袋化肥重量321220(千克)
  答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
  例4
  甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
  解
  从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,这说明甲车是大数,乙车是小数,甲与乙的差是(1423),甲与乙的和是97,因此甲车筐数(971423)264(筐)
  乙车筐数976433(筐)
  答:甲车原来装苹果64筐,乙车原来装苹果33筐。
  04hr和倍问题
  【含义】
  已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
  【数量关系】
  总和(几倍1)较小的数
  总和较小的数较大的数
  较小的数几倍较大的数
  【解题思路和方法】
  简单的题目直接利用公式,复杂的题目变通后利用公式。
  例1
  果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
  解
  (1)杏树有多少棵?248(31)62(棵)
  (2)桃树有多少棵?623186(棵)
  答:杏树有62棵,桃树有186棵。
  例2
  东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1。4倍,求两库各存粮多少吨?
  解
  (1)西库存粮数480(1。41)200(吨)
  (2)东库存粮数480200280(吨)
  答:东库存粮280吨,西库存粮200吨。
  例3
  甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
  解
  每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(2824)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(5232)就相当于(21)倍,
  那么,几天以后甲站的车辆数减少为
  (5232)(21)28(辆)
  所求天数为(5228)(2824)6(天)
  答:6天以后乙站车辆数是甲站的2倍。
  例4
  甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
  解
  乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
  因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
  又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
  这时(17046)就相当于(123)倍。那么,
  甲数(17046)(123)28
  乙数282452
  丙数283690
  答:甲数是28,乙数是52,丙数是90。
  05hr差倍问题
  【含义】
  已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
  【数量关系】
  两个数的差(几倍1)较小的数
  较小的数几倍较大的数
  【解题思路和方法】
  简单的题目直接利用公式,复杂的题目变通后利用公式。
  例1
  果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
  解
  (1)杏树有多少棵?124(31)62(棵)
  (2)桃树有多少棵?623186(棵)
  答:果园里杏树是62棵,桃树是186棵。
  例2
  爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
  解
  (1)儿子年龄27(41)9(岁)
  (2)爸爸年龄9436(岁)
  答:父子二人今年的年龄分别是36岁和9岁。
  例3
  商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
  解
  如果把上月盈利作为1倍量,则(3012)万元就相当于上月盈利的(21)倍,因此
  上月盈利(3012)(21)18(万元)
  本月盈利183048(万元)
  答:上月盈利是18万元,本月盈利是48万元。
  例4
  粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?
  解
  由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(13894)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(13894)就相当于(31)倍,因此
  剩下的小麦数量(13894)(31)22(吨)
  运出的小麦数量942272(吨)
  运粮的天数7298(天)
  答:8天以后剩下的玉米是小麦的3倍。
  06hr倍比问题
  【含义】
  有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
  【数量关系】
  总量一个数量倍数
  另一个数量倍数另一总量
  【解题思路和方法】
  先求出倍数,再用倍比关系求出要求的数。
  例1
  100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
  解
  (1)3700千克是100千克的多少倍?370010037(倍)
  (2)可以榨油多少千克?40371480(千克)
  列成综合算式40(3700100)1480(千克)
  答:可以榨油1480千克。
  例2
  今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
  解
  (1)48000名是300名的多少倍?48000300160(倍)
  (2)共植树多少棵?40016064000(棵)
  列成综合算式400(48000300)64000(棵)
  答:全县48000名师生共植树64000棵。
  例3
  凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
  解
  (1)800亩是4亩的几倍?8004200(倍)
  (2)800亩收入多少元?111112002222200(元)
  (3)16000亩是800亩的几倍?1600080020(倍)
  (4)16000亩收入多少元?22222002044444000(元)
  答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。
  07hr相遇问题
  【含义】
  两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
  【数量关系】
  相遇时间总路程(甲速乙速)
  总路程(甲速乙速)相遇时间
  【解题思路和方法】
  简单的题目可直接利用公式,复杂的题目变通后再利用公式。
  例1
  南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
  解
  392(2821)8(小时)
  答:经过8小时两船相遇。
  例2
  小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
  解
  第二次相遇可以理解为二人跑了两圈。
  因此总路程为4002
  相遇时间(4002)(53)100(秒)
  答:二人从出发到第二次相遇需100秒时间。
  例3
  甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
  解
  两人在距中点3千米处相遇是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(32)千米,因此,
  相遇时间(32)(1513)3(小时)
  两地距离(1513)384(千米)
  答:两地距离是84千米。
  08hr追及问题
  【含义】
  两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
  【数量关系】
  追及时间追及路程(快速慢速)
  追及路程(快速慢速)追及时间
  【解题思路和方法】
  简单的题目直接利用公式,复杂的题目变通后利用公式。
  例1
  好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
  解
  (1)劣马先走12天能走多少千米?7512900(千米)
  (2)好马几天追上劣马?900(12075)20(天)
  列成综合算式7512(12075)9004520(天)
  答:好马20天能追上劣马。
  例2
  小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
  解
  小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用40(500200)秒,所以小亮的速度是
  (500200)40(500200)
  3001003(米)
  答:小亮的速度是每秒3米。
  例3
  我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
  解
  敌人逃跑时间与解放军追击时间的时差是(2216)小时,这段时间敌人逃跑的路程是10(226)千米,甲乙两地相距60千米。由此推知
  追及时间10(226)60(3010)
  2202011(小时)
  答:解放军在11小时后可以追上敌人。
  例4
  一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
  解
  这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(162)千米,客车追上货车的时间就是前面所说的相遇时间,
  这个时间为162(4840)4(小时)
  所以两站间的距离为(4840)4352(千米)
  列成综合算式(4840)162(4840)
  884
  352(千米)
  答:甲乙两站的距离是352千米。
  09hr植树问题
  【含义】
  按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
  【数量关系】
  线形植树棵数距离棵距1
  环形植树棵数距离棵距
  方形植树棵数距离棵距4
  三角形植树棵数距离棵距3
  面积植树棵数面积(棵距行距)
  【解题思路和方法】
  先弄清楚植树问题的类型,然后可以利用公式。
  例1
  一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
  解
  1362168169(棵)
  答:一共要栽69棵垂柳。
  例2
  一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
  解
  4004100(棵)
  答:一共能栽100棵白杨树。
  例3
  一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
  解
  2204841104106(个)
  答:一共可以安装106个照明灯。
  例4
  给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
  解
  96(0。60。4)960。24400(块)
  答:至少需要400块地板砖。
  例5
  一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
  解
  (1)桥的一边有多少个电杆?50050111(个)
  (2)桥的两边有多少个电杆?11222(个)
  (3)大桥两边可安装多少盏路灯?22244(盏)
  答:大桥两边一共可以安装44盏路灯。
  10hr年龄问题
  【含义】
  这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
  【数量关系】
  年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住年龄差不变这个特点。
  【解题思路和方法】
  可以利用差倍问题的解题思路和方法。
  例1
  爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?
  解
  3557(倍)
  (351)(51)6(倍)
  答:今年爸爸的年龄是亮亮的7倍,
  明年爸爸的年龄是亮亮的6倍。
  例2
  母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?
  解
  (1)母亲比女儿的年龄大多少岁?37730(岁)
  (2)几年后母亲的年龄是女儿的4倍?30(41)73(年)
  列成综合算式(377)(41)73(年)
  答:3年后母亲的年龄是女儿的4倍。
  例3
  甲对乙说:当我的岁数曾经是你现在的岁数时,你才4岁。乙对甲说:当我的岁数将来是你现在的岁数时,你将61岁。求甲乙现在的岁数各是多少?
  解
  这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:
  过去某一年今年将来某一年
  甲岁岁61岁
  乙4岁岁岁
  表中两个表示同一个数,两个表示同一个数。
  因为两个人的年龄差总相等:461,也就是4,,,61成等差数列,所以,61应该比4大3个年龄差,
  因此二人年龄差为(614)319(岁)
  甲今年的岁数为611942(岁)
  乙今年的岁数为421923(岁)
  答:甲今年的岁数是42岁,乙今年的岁数是23岁。
  11hr行船问题
  【含义】
  行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
  【数量关系】
  (顺水速度逆水速度)2船速
  (顺水速度逆水速度)2水速
  顺水速船速2逆水速逆水速水速2
  逆水速船速2顺水速顺水速水速2
  【解题思路和方法】
  大多数情况可以直接利用数量关系的公式。
  例1
  一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
  解
  由条件知,顺水速船速水速3208,而水速为每小时15千米,所以,船速为每小时32081525(千米)
  船的逆水速为251510(千米)
  船逆水行这段路程的时间为3201032(小时)
  答:这只船逆水行这段路程需用32小时。
  例2
  甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
  解
  由题意得甲船速水速3601036
  甲船速水速3601820
  可见(3620)相当于水速的2倍,
  所以,水速为每小时(3620)28(千米)
  又因为,乙船速水速36015,
  所以,乙船速为36015832(千米)
  乙船顺水速为32840(千米)
  所以,乙船顺水航行360千米需要
  360409(小时)
  答:乙船返回原地需要9小时。
  12hr列车问题
  【含义】
  这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
  【数量关系】
  火车过桥:过桥时间(车长桥长)车速
  火车追及:追及时间(甲车长乙车长距离)
  (甲车速乙车速)
  火车相遇:相遇时间(甲车长乙车长距离)
  (甲车速乙车速)
  【解题思路和方法】
  大多数情况可以直接利用数量关系的公式。
  例1
  一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?
  解
  火车3分钟所行的路程,就是桥长与火车车身长度的和。
  (1)火车3分钟行多少米?90032700(米)
  (2)这列火车长多少米?27002400300(米)
  列成综合算式90032400300(米)
  答:这列火车长300米。
  例2
  一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?
  解
  火车过桥所用的时间是2分5秒125秒,所走的路程是(8125)米,这段路程就是(200米桥长),所以,桥长为
  8125200800(米)
  答:大桥的长度是800米。
  例3
  一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?
  解
  从追上到追过,快车比慢车要多行(225140)米,而快车比慢车每秒多行(2217)米,因此,所求的时间为
  (225140)(2217)73(秒)
  答:需要73秒。
  例4
  一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?
  解
  如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。
  150(223)6(秒)
  答:火车从工人身旁驶过需要6秒钟。
  13hr时钟问题
  【含义】
  就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。
  【数量关系】
  分针的速度是时针的12倍,
  二者的速度差为1112。
  通常按追及问题来对待,也可以按差倍问题来计算。
  【解题思路和方法】
  变通为追及问题后可以直接利用公式。
  例1
  从时针指向4点开始,再经过多少分钟时针正好与分针重合?
  解
  钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走560112格。每分钟分针比时针多走(1112)1112格。4点整,时针在前,分针在后,两针相距20格。所以
  分针追上时针的时间为20(1112)22(分)
  答:再经过22分钟时针正好与分针重合。
  例2
  四点和五点之间,时针和分针在什么时候成直角?
  解
  钟面上有60格,它的14是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(54)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5415)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5415)格。再根据1分钟分针比时针多走(1112)格就可以求出二针成直角的时间。
  (5415)(1112)6(分)
  (5415)(1112)38(分)
  答:4点06分及4点38分时两针成直角。
  例3
  六点与七点之间什么时候时针与分针重合?
  解
  六点整的时候,分针在时针后(56)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。
  (56)(1112)33(分)
  答:6点33分的时候分针与时针重合。
  14hr盈亏问题
  【含义】
  根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
  【数量关系】
  一般地说,在两次分配中,如果一次盈,一次亏,则有:
  参加分配总人数(盈亏)分配差
  如果两次都盈或都亏,则有:
  参加分配总人数(大盈小盈)分配差
  参加分配总人数(大亏小亏)分配差
  【解题思路和方法】
  大多数情况可以直接利用数量关系的公式。
  例1
  给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?
  解
  按照参加分配的总人数(盈亏)分配差的数量关系:
  (1)有小朋友多少人?(111)(43)12(人)
  (2)有多少个苹果?3121147(个)
  答:有小朋友12人,有47个苹果。
  例2
  修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?
  解
  题中原定完成任务的天数,就相当于参加分配的总人数,按照参加分配的总人数(大亏小亏)分配差的数量关系,可以得知
  原定完成任务的天数为
  (26083004)(300260)22(天)
  这条路全长为300(224)7800(米)
  答:这条路全长7800米。
  例3
  学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?
  解
  本题中的车辆数就相当于参加分配的总人数,于是就有
  (1)有多少车?(300)(4540)6(辆)
  (2)有多少人?40630270(人)
  答:有6辆车,有270人。
  15hr工程问题
  【含义】
  工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出一项工程、一块土地、一条水渠、一件工作等,在解题时,常常用单位1表示工作总量。
  【数量关系】
  解答工程问题的关键是把工作总量看作1,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
  工作量工作效率工作时间
  工作时间工作量工作效率
  工作时间总工作量(甲工作效率乙工作效率)
  【解题思路和方法】
  变通后可以利用上述数量关系的公式。
  例1
  一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
  解
  题中的一项工程是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位1。由于甲队独做需10天完成,那么每天完成这项工程的110;乙队单独做需15天完成,每天完成这项工程的115;两队合做,每天可以完成这项工程的(110115)。
  由此可以列出算式:1(110115)1166(天)
  答:两队合做需要6天完成。
  例2
  一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
  解一
  设总工作量为1,则甲每小时完成16,乙每小时完成18,甲比乙每小时多完成(1618),二人合做时每小时完成(1618)。因为二人合做需要1(1618)小时,这个时间内,甲比乙多做24个零件,所以
  (1)每小时甲比乙多做多少零件?
  241(1618)7(个)
  (2)这批零件共有多少个?
  7(1618)168(个)
  答:这批零件共有168个。
  解二
  上面这道题还可以用另一种方法计算:
  两人合做,完成任务时甲乙的工作量之比为161843
  由此可知,甲比乙多完成总工作量的434317
  所以,这批零件共有2417168(个)
  例3
  一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
  解
  必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是
  601256010660154
  因此余下的工作量由乙丙合做还需要
  (6052)(64)5(小时)
  答:还需要5小时才能完成。
  例4
  一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?
  解:
  注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。
  要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。
  我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(145),2个进水管15小时注水量为(1215),从而可知
  每小时的排水量为(1215145)(155)1
  即一个排水管与每个进水管的工作效率相同。由此可知
  一池水的总工作量为1451515
  又因为在2小时内,每个进水管的注水量为12,
  所以,2小时内注满一池水
  至少需要多少个进水管?(1512)(12)
  8。59(个)
  答:至少需要9个进水管。
  16hr正反比例问题
  【含义】
  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。
  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。
  【数量关系】
  判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
  【解题思路和方法】
  解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。
  正反比例问题与前面讲过的倍比问题基本类似。
  例1
  修一条公路,已修的是未修的13,再修300米后,已修的变成未修的12,求这条公路总长是多少米?
  解
  由条件知,公路总长不变。
  原已修长度总长度1(13)14312
  现已修长度总长度1(12)13412
  比较以上两式可知,把总长度当作12份,则300米相当于(43)份,从而知公路总长为300(43)123600(米)
  答:这条公路总长3600米。
  例2
  张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?
  解
  做题效率一定,做题数量与做题时间成正比例关系
  设91分钟可以做X应用题则有28491X
  28X914X91428X13
  答:91分钟可以做13道应用题。
  例3
  孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?
  解
  书的页数一定,每天看的页数与需要的天数成反比例关系
  设X天可以看完,就有2436X15
  36X2415X10
  答:10天就可以看完。
  17hr按比例分配问题
  【含义】
  所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。
  【数量关系】
  从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数比的前后项之和
  【解题思路和方法】
  先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
  例1
  学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?
  解
  总份数为474845140
  一班植树56047140188(棵)
  二班植树56048140192(棵)
  三班植树56045140180(棵)
  答:一、二、三班分别植树188棵、192棵、180棵。
  例2
  用60厘米长的铁丝围成一个三角形,三角形三条边的比是345。三条边的长各是多少厘米?
  解
  345126031215(厘米)
  6041220(厘米)
  6051225(厘米)
  答:三角形三条边的长分别是15厘米、20厘米、25厘米。
  例3
  从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的12,二儿子分总数的13,三儿子分总数的19,并规定不许把羊宰割分,求三个儿子各分多少只羊。
  解
  如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到
  121319962
  96217179179
  176176172172
  答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。
  例4
  某工厂第一、二、三车间人数之比为81221,第一车间比第二车间少80人,三个车间共多少人?
  解
  80(128)(81221)820(人)
  答:三个车间一共820人。
  18hr百分数问题
  【含义】
  百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示率,也可以表示量,而百分数只能表示率;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号。
  在实际中和常用到百分点这个概念,一个百分点就是1,两个百分点就是2。
  【数量关系】
  掌握百分数、标准量比较量三者之间的数量关系:
  百分数比较量标准量
  标准量比较量百分数
  【解题思路和方法】
  一般有三种基本类型:
  (1)求一个数是另一个数的百分之几;
  (2)已知一个数,求它的百分之几是多少;
  (3)已知一个数的百分之几是多少,求这个数。
  例1
  仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?
  解
  (1)用去的占720(7206480)10
  (2)剩下的占6480(7206480)90
  答:用去了10,剩下90。
  例2
  红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?
  解
  本题中女职工人数为标准量,男职工比女职工少的人数是比较量所以(525420)5250。220
  或者14205250。220
  答:男职工人数比女职工少20。
  例3
  红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?
  解
  本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此
  (525420)4200。2525
  或者52542010。2525
  答:女职工人数比男职工多25。
  例4
  红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?
  解
  (1)男职工占420(420525)0。44444。4
  (2)女职工占525(420525)0。55655。6
  答:男职工占全厂职工总数的44。4,女职工占55。6。
  19hr牛吃草问题
  【含义】
  牛吃草问题是大科学家牛顿提出的问题,也叫牛顿问题。这类问题的特点在于要考虑草边吃边长这个因素。
  【数量关系】
  草总量原有草量草每天生长量天数
  【解题思路和方法】
  解这类题的关键是求出草每天的生长量。
  例1
  一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?
  解
  草是均匀生长的,所以,草总量原有草量草每天生长量天数。求多少头牛5天可以把草吃完,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:
  (1)求草每天的生长量
  因为,一方面20天内的草总量就是10头牛20天所吃的草,即(11020);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以
  11020原有草量20天内生长量
  同理11510原有草量10天内生长量
  由此可知(2010)天内草的生长量为
  110201151050
  因此,草每天的生长量为50(2010)5
  (2)求原有草量
  原有草量10天内总草量10内生长量11510510100
  (3)求5天内草总量
  5天内草总量原有草量5天内生长量10055125
  (4)求多少头牛5天吃完草
  因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。
  因此5天吃完草需要牛的头数125525(头)
  答:需要5头牛5天可以把草吃完。
  例2
  一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘
  水,要10小时才能淘完。求17人几小时可以淘完?
  解
  这是一道变相的牛吃草问题。与上题不同的是,最后一问给出了人数(相当于牛数),求时间。设每人每小时淘水量为1,按以下步骤计算:
  (1)求每小时进水量
  因为,3小时内的总水量1123原有水量3小时进水量
  10小时内的总水量1510原有水量10小时进水量
  所以,(103)小时内的进水量为1510112314
  因此,每小时的进水量为14(103)2
  (2)求淘水前原有水量
  原有水量11233小时进水量362330
  (3)求17人几小时淘完
  17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(172),所以17人淘完水的时间是
  30(172)2(小时)
  答:17人2小时可以淘完水。
  20hr鸡兔同笼问题
  【含义】
  这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
  【数量关系】
  第一鸡兔同笼问题:
  假设全都是鸡,则有
  兔数(实际脚数2鸡兔总数)(42)
  假设全都是兔,则有
  鸡数(4鸡兔总数实际脚数)(42)
  第二鸡兔同笼问题:
  假设全都是鸡,则有
  兔数(2鸡兔总数鸡与兔脚之差)(42)
  假设全都是兔,则有
  鸡数(4鸡兔总数鸡与兔脚之差)(42)
  【解题思路和方法】
  解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。
  例1
  长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?
  解
  假设35只全为兔,则
  鸡数(43594)(42)23(只)
  兔数352312(只)
  也可以先假设35只全为鸡,则
  兔数(94235)(42)12(只)
  鸡数351223(只)
  答:有鸡23只,有兔12只。
  例2
  2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?
  解
  此题实际上是改头换面的鸡兔同笼问题。每亩菠菜施肥(12)千克与每只鸡有两个脚相对应,每亩白菜施肥(35)千克与每只兔有4只脚相对应,16亩与鸡兔总数相对应,9千克与鸡兔总脚数相对应。假设16亩全都是菠菜,则有
  白菜亩数(91216)(3512)10(亩)
  答:白菜地有10亩。
  例3
  李老师用69元给学校买作业本和日记本共45本,作业本每本3。20元,日记本每本0。70元。问作业本和日记本各买了多少本?
  解
  此题可以变通为鸡兔同笼问题。假设45本全都是日记本,则有
  作业本数(690。7045)(3。200。70)15(本)
  日记本数451530(本)
  答:作业本有15本,日记本有30本。
  例4
  (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
  解
  假设100只全都是鸡,则有
  兔数(210080)(42)20(只)
  鸡数1002080(只)
  答:有鸡80只,有兔20只。
  例5
  有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?
  解
  假设全为大和尚,则共吃馍(3100)个,比实际多吃(3100100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以小换大,一个小和尚换掉一个大和尚可减少馍(313)个。因此,共有小和尚
  (3100100)(313)75(人)
  共有大和尚1007525(人)
  答:共有大和尚25人,有小和尚75人。
  21hr方阵问题
  【含义】
  将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
  【数量关系】
  (1)方阵每边人数与四周人数的关系:
  四周人数(每边人数1)4
  每边人数四周人数41
  (2)方阵总人数的求法:
  实心方阵:总人数每边人数每边人数
  空心方阵:总人数(外边人数)?(内边人数)?
  内边人数外边人数层数2
  (3)若将空心方阵分成四个相等的矩形计算,则:
  总人数(每边人数层数)层数4
  【解题思路和方法】
  方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
  例1
  在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?
  解
  2222484(人)
  答:参加体操表演的同学一共有484人。
  例2
  有一个3层中空方阵,最外边一层有10人,求全方阵的人数。
  解
  10(1032)?
  84(人)
  答:全方阵84人。
  例3
  有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?
  解
  (1)中空方阵外层每边人数524114(人)
  (2)中空方阵内层每边人数28416(人)
  (3)中空方阵的总人数141466160(人)
  答:这队学生共160人。
  例4
  一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?
  解
  (1)纵横方向各增加一层所需棋子数4913(只)
  (2)纵横增加一层后正方形每边棋子数(131)27(只)
  (3)原有棋子数77940(只)
  答:棋子有40只。
  例5
  有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?
  解
  第一种方法:1234515(棵)
  第二种方法:(51)5215(棵)
  答:这个三角形树林一共有15棵树。

驰援湖北陆良医疗应急冲锋队正式出征文图李志瑶张鹏俊高峰为助力新冠肺炎疫情防控工作,2月10日,陆良县援助湖北医疗应急冲锋队出征仪式在县医院举行,陆良县首批医疗队已集结完毕,即将驰援湖北。我们庄严宣誓坚决完成任务……不安焦虑怀疑让妳变得不正常的爱情就放了吧看了一部很老的电影《我想和你好好的》,虽然是很旧的片,但我从未看过,它的剧情并不十分精采,所以一直没有很大名气。以前若没接触过依恋理论,或许只觉得这个女主角很奇怪,但了解……秦皇岛特色小吃18道,吃过的都说很地道1、粉鸽子。大家千万不要被名字骗了,以为是粉色的鸽子肉。其实这道美食跟鸽子没有半毛钱关系,秦皇岛土著才知道,它是用绿豆面做成非常薄而圆的饼,然后贴在锅里制作而成的。相传慈禧太后……再回到从前作者:幸恩如果再回到从前,所有一切重演,我是否会明白生活重点,不怕挫折打击,没有空虚埋怨,让我看得更远这是你我熟悉的歌,曾经共同喜欢过的歌。生命中总有一些往事……哪个人的一生会永远在得到又不曾失去呢?对于已经失去的一些东西,或许真的不会再回来。失去了就是失去了,不要再等着梦着会有一天重新回来。就像时间一去就不复返了。无论你做了怎么样的选择,要走什么样的路,都一定会在将……利剑高悬还敢敷衍作假?污水治理问题猛如虎文丨崔桂忠4月16日,第二轮第三批中央生态环境保护督察组对8个典型案例进行集中公开通报。在这8起案件中,有4起是因为污水治理问题:广西崇左市黑臭水体治理一填了之,污……临渭区文化馆海兴分馆馨声合唱团参加唱支山歌给党听大家唱暨全省为庆祝中国共产党成立100周年,引导群众以歌声唱响全面小康生活,向党的百年华诞献礼,按照《文化和旅游部办公厅关于开展唱支山歌给党听大家唱群众歌咏活动的通知》要求。5月23日,临……熔炉不再沉默配音服务由闪电配音公众号提供作者:姜如也编辑:北楼8层的女同事一个美术老师,一位人权组织成员,无数聋哑小孩;一种强大到掩盖一切的黑暗,一个龌龊坚固体系这就是韩国电影……有一种爱,叫我等你,等多久都愿意!等我们都老了,真的还能再见面吗?如果我们今生有缘再见,那么我等你,等多久都愿意,只要最后等来的是你。等是一个字,却是一辈子。多少人,因为一个等字,从青春年华,到徐徐……日本太太晒出乡下生活悠闲自在,舒适惬意,这家居品味满分日本乡下生活,一直是我向往的家居形态。不仅空气好,而且风景也很美,最重要的是生活节奏也很慢,生活在这里简直就是一种享受。这位日本太太带着俩孩子回归乡下,晒出悠闲自在、舒适惬意的……女人要想生活的更好,必须要记住这6句话作为一个女人,你必须记住这六个现实,才能够生活的更好,第一,少吃真的会瘦,而且瘦了真的很好看,但是也别太瘦,第二。善良有的时候,对一些人真的没有用,对待不懂得感恩的人,你得学会……她是世界上在联合国宪章上签字的唯一女性1945年6月26日,吴贻芳在联合国制宪大会上代表中国在联合宪章上签字吴贻芳,号冬生,1893年1月出生于江苏泰兴,祖籍安徽休宁。曾祖父吴存义,清道光、咸丰年间侍郎;祖父……
什么好像什么(什么像什么造句子三年级)文艾小贝爱教育不少学生们从小学阶段开始,在学习上就要逐渐变得忙碌了,小学阶段和学前班是完全没法比的。小学阶段不放每天放学的时间要晚了一些,每天放学回家后的家庭作业也变得多……为什么要阅读(关于为什么要读书的论文)孩子在翻我那些待整理的图书其实,谈到读书,我们大多数人都是不太喜欢的!不论今古,我们都认为读书是一件很苦的事情。关于刻苦读书的经典案例也不需要我一一列举了,我想苦是读书的……学会自律才有更好自己优秀,才能骄傲,抱怨自己,只有伤感,自己出色,才有精彩,抱怨生活,只有不幸。学会自律,才有更好,抱怨命运,只有痛苦,学会自强,才有快乐,……米饭怎么做好吃?(米饭这样做,比煲仔饭还好吃)米饭怎么做好吃?(米饭这样做,比煲仔饭还好吃)季节交替时段的菜总觉得好难买,绿叶蔬菜到了春天都抽菜苔了,加上春天雨水多,吃起来一点也不鲜嫩还很寡淡,春天可吃的本地蚕豆什么……白萝卜怎么腌制好吃(白萝卜腌制方法脆爽甜视频)伴随着一阵阵的寒风,不少地方都已经开启了冬日模式,进入冬天之后,气温骤然下降,大雪大风天气频繁,所以我们在日常吃喝上很难像其它季节那样自由,因此进入冬天以后,很多朋友都会在家里……什么是臭氧(臭氧是干嘛的)臭氧科普腾讯视频究竟什么是臭氧?臭氧,是氧气的一种同素异形体,比含2个氧原子的氧气多1个氧原子,常温下是一种有特殊臭味的蓝色气体。臭氧普遍存在于自地面到50千……那些童年时期的创伤其实一直影响着我们的人生,而我们并不自知阿德勒说:幸运的人一生都被童年治愈,不幸的人一生都在治愈童年。突然发现,走过半生,原来我们一直在不断的治愈自己的童年。童年时期遭遇酗酒、暴力、忽视的父母、争吵、离异的父母……桃花源诗廊王鳌送别2020送别2020庚子年注定注定有太多的剧情发生新冠肆虐父女反目同窗割席红尘绝骑曾经的誓言脆弱得化成一缕轻烟春节的行囊还来不及打……月季花的品种(月季品种多不知哪个好)月季花的品种(月季品种多不知哪个好)月季花是养花界的一大坑,很多人都是买了一种又一种,家里有了几十种,看到还是忍不住地买,边养边淘汰,最好才能找到一些开花性能好的月季品种……想送你回家的人,东南西北都顺路想见你的人,千山万水都能赶来婚礼那天我会给你一张请柬你见过我哭的样子见过我笑的样子我想最后让你再见见我不属于你的样子。我可以走近一万步去追上你,也愿意退一万零一步离开你。谁我都不想等了以后就等红灯等雨停等……鼻烟粉对身体有害吗(用鼻烟对鼻炎有什么好处)所谓良药苦口,大多数人都不喜欢吃药。如果想要达到治疗疾病的目的,是否能够像吸烟一样把药物抽进体内呢?广东省人民医院胸外科主任乔贵宾教授解释,随着医疗技术水平的提高,目前已……发给女朋友看的很暖心的话让她感受满满的爱意【1】往后的日子,愿你成为自己想成为的人,别为难自己,别辜负岁月。【2】当我对你说:你玩吧,其实我多么希望你回我一句:你重要,我陪你。【3】只要闭上我的眼睛,满脑子……
友情链接:易事利快生活快传网聚热点七猫云快好知快百科中准网快好找文好找中准网快软网