鸡兔同笼问题解法(鸡兔同笼有几种方法解决?) 鸡兔同笼问题是小学阶段一个重要的奥数问题,本内容原来设置在旧版人教版教材六年级上册《数学广角》里面,新人教版教材将其提前到四年级下册数学教科书的《数学广角》里面,鸡兔同笼问题能够帮助血红色呢个提高问题的分析能力和解决问题的逻辑思维能力。今天,J老师和各位同学一起学习鸡兔同笼问题,我们用什么方法解决呢?给大家介绍常用的六种方法,看看哪一种方法最适合你。 说起鸡兔同笼就要说起1500年前的《孙子算经》里面的经典题目(传到日本变成了龟鹤问题),我们就从这道题目入手,书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 解决鸡兔同笼问题的第一种方法:枚举法(列表法)。 方法很简单过程很复杂,就是根据不断变化鸡和兔的数量,分别把鸡和兔子的腿的的数量填入表格中,知道找到正确的答案为止,这种方法只适合与课堂教学中的探索和对其他方法的引导,由于这种方法太过笨拙,用时较多,在日常的练习和考试中一般不适用。所以这种方法大家了解即可。 解决鸡兔同笼问题的第二种方法:假设法(矛盾法)。 这种解决鸡兔同笼问题的主要解决方法之一,该方法主要是根据题目当中的已知条件,对题目进行某种假设,然后按照条件进行推理,找到与题目数量的矛盾之处,最后进行合理的变化从而得出正确的结论。同时呢,假设法也是奥数题目中经常遇到的方法(这里仅对于鸡兔同笼问题进行讲解,其他问题的假设法这里暂时不再赘述),这种方法关键是通过假设找到与题目中的数量出现的矛盾之处。 我们首先看题目:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 思考过程:假设笼子里面35只全是兔子的话,那么脚的总数应该是:354140(只),但是实际笼子里只有94只脚,这就与我们假设的出现矛盾了,多出了1409446只脚,为什么会多出46只脚呢?因为笼子里不全是兔子还有鸡,我们把两只脚的鸡假设成了兔子(现实中一只兔子比一只鸡多两只脚),由于我们的假设而多出了46只脚,多2条腿就有1只鸡,那么多出的46只腿当中有多少个2,就有多少只鸡,我们就用46223(只),求出了鸡的数量,再用352312(只)得出兔子的数量。 我们总结算式:鸡的数量(35494)(42)23(只) 兔子的数量352312(只) 归纳公式:如果假设全是兔子:(总头数一只兔子脚的数量总脚数)(一只兔子脚的数量一只鸡的脚的数量) 当然,我们还可以假设笼子里全是鸡,如果全是鸡,脚的总数是35270(只)脚,与实际少了947024(只)脚,由于一直鸡比一只兔子少两只脚,每少两只脚就有一只兔子,少24只脚就有:24212(只)兔子,算出兔子数量,鸡的数量就是:351223(只)。 列出算式:兔子的数量(94352)(42)12(只) 鸡的数量351223(只) 归纳公式:如果假设全是鸡:(总脚数总头数一只鸡脚的数量)(一只兔子脚的数量一只鸡的脚的数量) 方法总结: 1、假设兔子求出鸡,假设鸡求出兔子。 2、这里不建议学生强记公式,做题的时候根据假设的步骤一步一步的思考最为简单。解决鸡兔同笼问题的第三种方法:砍腿法 如果把兔子的两条腿去掉,那么兔子就和鸡一样都是两条腿了,那么现在笼子里脚的数量应该是:35270(只)脚,原来有94只脚,减少了947024(只)脚,一只兔子被砍去2条腿,脚的总数量就减少2只脚,那么减少了24只脚,就是有24212(只)兔子被砍腿,然后总数减去兔子数量就是鸡的数量。 列出算式:如果每只兔子去掉2条腿,兔子数量:(94352)212(只) 鸡的数量351223(只) 方法归纳:虽然残忍但是学生容易理解,更容易思考。 解决鸡兔同笼问题的第四种方法:抬腿法(有人说是金鸡独立法) 抬腿法一: 如果让鸡抬一只脚(金鸡独立)和兔子抬两只脚(玉兔抬蹄),这时笼子里的腿的数量就减半,变成94247(只)脚,现在每鸡一只脚着地,每兔子两只脚着地,鸡的数量就是腿的数量,兔子的腿就比兔子的数量多1。 鸡抬一只脚和兔子抬两只脚 那么现在腿的总数量与头的数量之差473512,就是兔子的数量。然后算出鸡的数量。 列式总结: 如果鸡抬一只脚,兔子抬两只脚:兔子数量9423512(只);鸡的数量:351223(只) 总结公式:兔子的只数总腿数2总只数。 抬腿法二:(和砍腿法异曲同工) 先让兔子和鸡同时抬两只脚,脚的总数减少35270(只)脚,剩下的脚就全是兔子的了,还剩下947024(只)脚,现在每一只兔子就还两只脚,那么24里面有几个2就有几只兔子,用24212(只),鸡:351223(只)。 抬腿二法:鸡和兔子同时抬起两条腿。 列式总结: 如果鸡和兔子同时抬起两只脚:兔子的数量:(94352)212(只);鸡的数量:351223(只)。 抬腿法的缺点:仅适用于鸡兔同笼问题。解决鸡兔同笼问题的第五种方法:列方程法 列方程法的前提是需要学生已经会设未知数,现在人教版的教材把鸡兔同笼问题提前至四年级,而四年级的学生在五年级上册才会学习到解方程,所以这里仅适合于五六年级的学生使用此方法,四年级之前的学生可以看前面的四种方法。 鸡脚的总数兔脚的总数总脚数 我们可以设兔子的的数量为X只,那么鸡的数量就是(35X)只。 4x2(35x)94 4x702x94 2x7094 2x24 x12 351223(只) 答:兔子12只,鸡有23只。 还可以设鸡为X只,那么兔子就有(35x)只 不管孩子怎么列方程,解方程时都会出现问题 如果列成:鸡脚的总数兔脚的总数总脚数: 2x4(35x)94 2x1404x94 做到这里很多小学的孩子就不会往下做了,因为合并未知数时出现了2x4x,小学阶段只学了负数的认识,负数的计算还没有学,所以一时会蒙,但是也不是不能做,只要稍动脑筋就会算出。 方程两边同时减去94变成2x464x0,方程两边再同时减去4X,变成2X464X,然后同时减去2X,变成2X46,解出x23,兔子352312(只)。 如果列成:兔脚的总数鸡脚的总数总脚数 4(35X)2X94 4354X2X94 做到这里孩子又不会算了。 方法总结:列方程容易思考,便于孩子的理解,注意事项是一定要设兔子的数量为X,便于孩子解方程。 今天我们就对鸡兔同笼问题分析到这里,一共给孩子提供了五种做法,当然还有其他的做法,这里不再一一讲解,不管什么方法都离不开孩子的理解和练习,所以理解是前提,解题是目的。