frompandasimportSeries,DataFrameimportpandasaspd In〔4〕:objSeries(〔1,2,3,4〕)obj Out〔4〕:01122334dtype:int64 In〔5〕:obj2Series(〔1,2,3,4〕,index〔a,b,c,d〕)obj2 Out〔5〕:a1b2c3d4dtype:int64 In〔6〕:obj2。values Out〔6〕:array(〔1,2,3,4〕,dtypeint64) In〔7〕:obj2。index Out〔7〕:Index(〔a,b,c,d〕,dtypeobject) In〔8〕:obj2〔b〕 Out〔8〕:2 In〔10〕:obj2〔c〕23obj2〔〔c,d〕〕 Out〔10〕:c23d4dtype:int64 In〔11〕:obj2 Out〔11〕:a1b2c23d4dtype:int64 In〔12〕:obj2〔obj20〕 Out〔12〕:b2d4dtype:int64 In〔13〕:obj22 Out〔13〕:a2b4c46d8dtype:int64 In〔16〕:importnumpyasnp In〔18〕:np。abs(obj2) Out〔18〕:a1b2c23d4dtype:int64 In〔20〕:data{张三:92,李四:78,王五:68,小明:82} In〔21〕:obj3Series(data)obj3 Out〔21〕:小明82张三92李四78王五68dtype:int64 In〔22〕:names〔张三,李四,王五,小明〕obj4Series(data,indexnames)obj4 Out〔22〕:张三92李四78王五68小明82dtype:int64 In〔23〕:obj4。namemathobj4。index。namestudents In〔24〕:obj4 Out〔24〕:students张三92李四78王五68小明82Name:math,dtype:int64dataframe In〔1〕:importnumpyasnpfrompandasimportSeries,DataFrameimportpandasaspd In〔2〕:data{name:〔张三,李四,王五,小明〕,sex:〔female,female,male,male〕,year:〔2001,2001,2003,2002〕,city:〔北京,上海,广州,北京〕}dfDataFrame(data)df Out〔2〕: city name sex year 0hr北京 张三 female 2001hr1hr上海 李四 female 2001hr2hr广州 王五 male 2003hr3hr北京 小明 male 2002hrIn〔3〕:dfDataFrame(data,columns〔name,sex,year,city〕)df Out〔3〕: name sex year city 0hr张三 female 2001hr北京 1hr李四 female 2001hr上海 2hr王五 male 2003hr广州 3hr小明 male 2002hr北京 In〔4〕:dfDataFrame(data,columns〔name,sex,year,city〕,index〔a,b,c,d〕)df Out〔4〕: name sex year city a 张三 female 2001hr北京 b 李四 female 2001hr上海 c 王五 male 2003hr广州 d 小明 male 2002hr北京 In〔5〕:df。index Out〔5〕:Index(〔a,b,c,d〕,dtypeobject) In〔6〕:df。columns Out〔6〕:Index(〔name,sex,year,city〕,dtypeobject) In〔7〕:data2{sex:{张三:female,李四:female,王五:male},city:{张三:北京,李四:上海,王五:广州}}df2DataFrame(data2)df2 Out〔7〕: city sex 张三 北京 female 李四 上海 female 王五 广州 male In〔8〕:df。index。nameiddf。columns。namestdinfo In〔9〕:df Out〔9〕: stdinfo name sex year city id a 张三 female 2001hr北京 b 李四 female 2001hr上海 c 王五 male 2003hr广州 d 小明 male 2002hr北京 In〔10〕:objSeries(〔1,2,3,4〕,index〔a,b,c,d〕)obj Out〔10〕:a1b2c3d4dtype:int64 In〔11〕:obj。index Out〔11〕:Index(〔a,b,c,d〕,dtypeobject) In〔12〕:df。index Out〔12〕:Index(〔a,b,c,d〕,dtypeobject,nameid) In〔13〕:df。columns Out〔13〕:Index(〔name,sex,year,city〕,dtypeobject,namestdinfo) In〔14〕:indexobj。indexindex〔1〕fTypeErrorTraceback(mostrecentcalllast)ipythoninput144f995da5e969inmodule()1indexobj。index2index〔1〕fF:Anacondaenvsdataanalysislibsitepackagespandascoreindexesbase。pyinsetitem(self,key,value)16681669defsetitem(self,key,value):1670raiseTypeError(Indexdoesnotsupportmutableoperations)16711672defgetitem(self,key):TypeError:Indexdoesnotsupportmutableoperations In〔15〕:df Out〔15〕: stdinfo name sex year city id a 张三 female 2001hr北京 b 李四 female 2001hr上海 c 王五 male 2003hr广州 d 小明 male 2002hr北京 In〔16〕:sexindf。columns Out〔16〕:True In〔17〕:findf。index Out〔17〕:False In〔20〕:objSeries(〔1,2,3,4〕,index〔b,a,c,d〕)obj Out〔20〕:b1a2c3d4dtype:int64 In〔21〕:obj2obj。reindex(〔a,b,c,d,e〕)obj2 Out〔21〕:a2。0b1。0c3。0d4。0eNaNdtype:float64 In〔27〕:objSeries(〔1,2,3,4〕,index〔0,2,3,5〕)obj Out〔27〕:01223354dtype:int64 In〔28〕:obj2obj。reindex(range(6),methodffill)obj2 Out〔28〕:011122334354dtype:int64 In〔29〕:dfDataFrame(np。arange(9)。reshape(3,3),index〔a,c,d〕,columns〔name,id,sex〕)df Out〔29〕: name id sex a 0hr1hr2hrc 3hr4hr5hrd 6hr7hr8hrIn〔30〕:df2df。reindex(〔a,b,c,d〕)df2 Out〔30〕: name id sex a 0。0 1。0 2。0 b NaN NaN NaN c 3。0 4。0 5。0 d 6。0 7。0 8。0 In〔31〕:df3df。reindex(columns〔name,year,id〕,fillvalue0)df3 Out〔31〕: name year id a 0hr0hr1hrc 3hr0hr4hrd 6hr0hr7hrIn〔49〕:data{name:〔张三,李四,王五,小明〕,grade:〔68,78,63,92〕}dfDataFrame(data)df Out〔49〕: grade name 0hr68hr张三 1hr78hr李四 2hr63hr王五 3hr92hr小明 In〔50〕:df2df。sortvalues(bygrade)df2 Out〔50〕: grade name 2hr63hr王五 0hr68hr张三 1hr78hr李四 3hr92hr小明 In〔51〕:df3df2。resetindex()df3 Out〔51〕: index grade name 0hr2hr63hr王五 1hr0hr68hr张三 2hr1hr78hr李四 3hr3hr92hr小明 In〔52〕:df4df2。resetindex(dropTrue)df4 Out〔52〕: grade name 0hr63hr王五 1hr68hr张三 2hr78hr李四 3hr92hr小明 In〔45〕:data{name:〔张三,李四,王五,小明〕,sex:〔female,female,male,male〕,year:〔2001,2001,2003,2002〕,city:〔北京,上海,广州,北京〕}dfDataFrame(data)df Out〔45〕: city name sex year 0hr北京 张三 female 2001hr1hr上海 李四 female 2001hr2hr广州 王五 male 2003hr3hr北京 小明 male 2002hrIn〔47〕:df2df。setindex(name)df2 Out〔47〕: city sex year name 张三 北京 female 2001hr李四 上海 female 2001hr王五 广州 male 2003hr小明 北京 male 2002hrIn〔48〕:df3df2。resetindex()df3 Out〔48〕: name city sex year 0hr张三 北京 female 2001hr1hr李四 上海 female 2001hr2hr王五 广州 male 2003hr3hr小明 北京 male 2002索引和选取 In〔1〕:importnumpyasnpfrompandasimportSeries,DataFrameimportpandasaspd In〔3〕:objSeries(〔1,2,3,4〕,index〔a,b,c,d〕)obj Out〔3〕:a1b2c3d4dtype:int64 In〔4〕:obj〔1〕 Out〔4〕:2 In〔5〕:obj〔b〕 Out〔5〕:2 In〔6〕:obj〔〔a,c〕〕 Out〔6〕:a1c3dtype:int64 In〔7〕:obj〔0:2〕 Out〔7〕:a1b2dtype:int64 In〔8〕:obj〔a:c〕 Out〔8〕:a1b2c3dtype:int64 In〔53〕:data{name:〔张三,李四,王五,小明〕,sex:〔female,female,male,male〕,year:〔2001,2001,2003,2002〕,city:〔北京,上海,广州,北京〕}dfDataFrame(data)df Out〔53〕: city name sex year 0hr北京 张三 female 2001hr1hr上海 李四 female 2001hr2hr广州 王五 male 2003hr3hr北京 小明 male 2002hrIn〔17〕:df〔city〕 Out〔17〕:0北京1上海2广州3北京Name:city,dtype:object In〔18〕:df。name Out〔18〕:0张三1李四2王五3小明Name:name,dtype:object In〔20〕:df〔〔city,sex〕〕 Out〔20〕: city sex 0hr北京 female 1hr上海 female 2hr广州 male 3hr北京 male In〔26〕:df2df。setindex(name)df2 Out〔26〕: city sex year name 张三 北京 female 2001hr李四 上海 female 2001hr王五 广州 male 2003hr小明 北京 male 2002hrIn〔27〕:df2〔0:2〕 Out〔27〕: city sex year name 张三 北京 female 2001hr李四 上海 female 2001hrIn〔28〕:df2〔李四:王五〕 Out〔28〕: city sex year name 李四 上海 female 2001hr王五 广州 male 2003hrIn〔29〕:df2 Out〔29〕: city sex year name 张三 北京 female 2001hr李四 上海 female 2001hr王五 广州 male 2003hr小明 北京 male 2002hrIn〔31〕:df2。loc〔张三〕 Out〔31〕:city北京sexfemaleyear2001Name:张三,dtype:object In〔33〕:df2。loc〔〔张三,王五〕〕 Out〔33〕: city sex year name 张三 北京 female 2001hr王五 广州 male 2003hrIn〔35〕:df2。iloc〔1〕 Out〔35〕:city上海sexfemaleyear2001Name:李四,dtype:object In〔36〕:df2。iloc〔〔1,3〕〕 Out〔36〕: city sex year name 李四 上海 female 2001hr小明 北京 male 2002hrIn〔41〕:df2。ix〔〔张三,王五〕,0:2〕 Out〔41〕: city sex name 张三 北京 female 王五 广州 male In〔75〕:pd。setoption(mode。chainedassignment,None) In〔43〕:df2。ix〔:,〔sex,year〕〕获取列 Out〔43〕: sex year name 张三 female 2001hr李四 female 2001hr王五 male 2003hr小明 male 2002hrIn〔44〕:df2。ix〔〔1,3〕,:〕获取行 Out〔44〕: city sex year name 李四 上海 female 2001hr小明 北京 male 2002hrIn〔45〕:df2〔sex〕female Out〔45〕:name张三True李四True王五False小明FalseName:sex,dtype:bool In〔46〕:df2〔df2〔sex〕female〕 Out〔46〕: city sex year name 张三 北京 female 2001hr李四 上海 female 2001hrIn〔48〕:df2〔(df2〔sex〕female)(df2〔city〕北京)〕 Out〔48〕: city sex year name 张三 北京 female 2001行和列的操作 In〔54〕:df Out〔54〕: city name sex year 0hr北京 张三 female 2001hr1hr上海 李四 female 2001hr2hr广州 王五 male 2003hr3hr北京 小明 male 2002hrIn〔57〕:newdata{city:武汉,name:小李,sex:male,year:2002} In〔59〕:dfdf。append(newdata,ignoreindexTrue)忽略索引值df Out〔59〕: city name sex year 0hr北京 张三 female 2001hr1hr上海 李四 female 2001hr2hr广州 王五 male 2003hr3hr北京 小明 male 2002hr4hr武汉 小李 male 2002hrIn〔60〕:df〔class〕2018df Out〔60〕: city name sex year class 0hr北京 张三 female 2001hr2018hr1hr上海 李四 female 2001hr2018hr2hr广州 王五 male 2003hr2018hr3hr北京 小明 male 2002hr2018hr4hr武汉 小李 male 2002hr2018hrIn〔61〕:df〔math〕〔92,78,58,69,82〕df Out〔61〕: city name sex year class math 0hr北京 张三 female 2001hr2018hr92hr1hr上海 李四 female 2001hr2018hr78hr2hr广州 王五 male 2003hr2018hr58hr3hr北京 小明 male 2002hr2018hr69hr4hr武汉 小李 male 2002hr2018hr82hrIn〔63〕:newdfdf。drop(2)删除行newdf Out〔63〕: city name sex year class math 0hr北京 张三 female 2001hr2018hr92hr1hr上海 李四 female 2001hr2018hr78hr3hr北京 小明 male 2002hr2018hr69hr4hr武汉 小李 male 2002hr2018hr82hrIn〔64〕:newdfnewdf。drop(class,axis1)删除列newdf Out〔64〕: city name sex year math 0hr北京 张三 female 2001hr92hr1hr上海 李四 female 2001hr78hr3hr北京 小明 male 2002hr69hr4hr武汉 小李 male 2002hr82hrIn〔65〕:newdf。rename(index{3:2,4:3},columns{math:Math},inplaceTrue)inplace可在原数据上修改newdf Out〔65〕: city name sex year Math 0hr北京 张三 female 2001hr92hr1hr上海 李四 female 2001hr78hr2hr北京 小明 male 2002hr69hr3hr武汉 小李 male 2002hr82hrIn〔67〕:obj1Series(〔3。2,5。3,4。4,3。7〕,index〔a,c,g,f〕)obj1 Out〔67〕:a3。2c5。3g4。4f3。7dtype:float64 In〔68〕:obj2Series(〔5。0,2,4。4,3。4〕,index〔a,b,c,d〕)obj2 Out〔68〕:a5。0b2。0c4。4d3。4dtype:float64 In〔69〕:obj1obj2 Out〔69〕:a8。2bNaNc9。7dNaNfNaNgNaNdtype:float64 In〔70〕:df1DataFrame(np。arange(9)。reshape(3,3),columns〔a,b,c〕,index〔apple,tea,banana〕)df1 Out〔70〕: a b c apple 0hr1hr2hrtea 3hr4hr5hrbanana 6hr7hr8hrIn〔71〕:df2DataFrame(np。arange(9)。reshape(3,3),columns〔a,b,d〕,index〔apple,tea,coco〕)df2 Out〔71〕: a b d apple 0hr1hr2hrtea 3hr4hr5hrcoco 6hr7hr8hrIn〔72〕:df1df2 Out〔72〕: a b c d apple 0。0 2。0 NaN NaN banana NaN NaN NaN NaN coco NaN NaN NaN NaN tea 6。0 8。0 NaN NaN In〔73〕:df1 Out〔73〕: a b c apple 0hr1hr2hrtea 3hr4hr5hrbanana 6hr7hr8hrIn〔76〕:sdf1。ix〔apple〕s Out〔76〕:a0b1c2Name:apple,dtype:int32 In〔77〕:df1s Out〔77〕: a b c apple 0hr0hr0hrtea 3hr3hr3hrbanana 6hr6hr6hrIn〔78〕:data{fruit:〔apple,orange,grape,banana〕,price:〔25元,42元,35元,14元〕}df1DataFrame(data)df1 Out〔78〕: fruit price 0hrapple 25元 1hrorange 42元 2hrgrape 35元 3hrbanana 14元 In〔79〕:deff(x):returnx。split(元)〔0〕df1〔price〕df1〔price〕。map(f)df1 Out〔79〕: fruit price 0hrapple 25hr1hrorange 42hr2hrgrape 35hr3hrbanana 14hrIn〔80〕:df2DataFrame(np。random。randn(3,3),columns〔a,b,c〕,index〔app,win,mac〕)df2 Out〔80〕: a b c app 1。507962 2。140018 0。053571 win 0。729671 0。207060 0。397773 mac 0。191497 0。765726 0。266327 In〔81〕:flambdax:x。max()x。min()df2。apply(f) Out〔81〕:a1。699460b2。347079c0。664100dtype:float64 In〔82〕:df2 Out〔82〕: a b c app 1。507962 2。140018 0。053571 win 0。729671 0。207060 0。397773 mac 0。191497 0。765726 0。266327 In〔84〕:df2。applymap(lambdax:。2fx) Out〔84〕: a b c app 1。51 2。14 0。05 win 0。73 0。21 0。40 mac 0。19 0。77 0。27 In〔86〕:obj1Series(〔2,3,2,1〕,index〔b,a,d,c〕)obj1 Out〔86〕:b2a3d2c1dtype:int64 In〔87〕:obj1。sortindex()升序 Out〔87〕:a3b2c1d2dtype:int64 In〔88〕:obj1。sortindex(ascendingFalse)降序 Out〔88〕:d2c1b2a3dtype:int64 In〔91〕:obj1。sortvalues() Out〔91〕:b2c1d2a3dtype:int64 In〔92〕:df2 Out〔92〕: a b c app 1。507962 2。140018 0。053571 win 0。729671 0。207060 0。397773 mac 0。191497 0。765726 0。266327 In〔93〕:df2。sortvalues(byb) Out〔93〕: a b c app 1。507962 2。140018 0。053571 mac 0。191497 0。765726 0。266327 win 0。729671 0。207060 0。397773 In〔2〕:dfDataFrame(np。random。randn(9)。reshape(3,3),columns〔a,b,c〕)df Out〔2〕: a b c 0hr0。660215 1。137716 0。302954 1hr1。496589 0。768645 2。091506 2hr0。170316 2。682284 0。041099 In〔3〕:df。sum() Out〔3〕:a2。327120b4。588645c2。435558dtype:float64 In〔4〕:df。sum(axis1) Out〔4〕:00。78045511。36356222。553067dtype:float64 In〔5〕:data{name:〔张三,李四,王五,小明〕,sex:〔female,female,male,male〕,math:〔78,79,83,92〕,city:〔北京,上海,广州,北京〕}dfDataFrame(data)df Out〔5〕: city math name sex 0hr北京 78hr张三 female 1hr上海 79hr李四 female 2hr广州 83hr王五 male 3hr北京 92hr小明 male In〔6〕:df。describe() Out〔6〕: math count 4。000000 mean 83。000000 std 6。377042 min 78。000000 25 78。750000 50 81。000000 75 85。250000 max 92。000000 In〔7〕:objSeries(〔a,b,a,c,b〕)obj Out〔7〕:0a1b2a3c4bdtype:object In〔8〕:obj。unique() Out〔8〕:array(〔a,b,c〕,dtypeobject) In〔9〕:obj。valuecounts() Out〔9〕:a2b2c1dtype:int64 In〔11〕:objSeries(np。random。randn(9),index〔〔one,one,one,two,two,two,three,three,three〕,〔a,b,c,a,b,c,a,b,c〕〕)obj Out〔11〕:onea0。697195b0。887408c0。451851twoa0。390779b2。058070c0。760594threea0。305534b0。720491c0。259225dtype:float64 In〔12〕:obj。index Out〔12〕:MultiIndex(levels〔〔one,three,two〕,〔a,b,c〕〕,labels〔〔0,0,0,2,2,2,1,1,1〕,〔0,1,2,0,1,2,0,1,2〕〕) In〔13〕:obj〔two〕 Out〔13〕:a0。390779b2。058070c0。760594dtype:float64 In〔15〕:obj〔:,a〕内层选取 Out〔15〕:one0。697195two0。390779three0。305534dtype:float64 In〔16〕:dfDataFrame(np。arange(16)。reshape(4,4),index〔〔one,one,two,two〕,〔a,b,a,b〕〕,columns〔〔apple,apple,orange,orange〕,〔red,green,red,green〕〕)df Out〔16〕: apple orange red green red green one a 0hr1hr2hr3hrb 4hr5hr6hr7hrtwo a 8hr9hr10hr11hrb 12hr13hr14hr15hrIn〔17〕:df〔apple〕 Out〔17〕: red green one a 0hr1hrb 4hr5hrtwo a 8hr9hrb 12hr13hrIn〔18〕:df。swaplevel(0,1) Out〔18〕: apple orange red green red green a one 0hr1hr2hr3hrb one 4hr5hr6hr7hra two 8hr9hr10hr11hrb two 12hr13hr14hr15hrIn〔19〕:df。sum(level0) Out〔19〕: apple orange red green red green one 4hr6hr8hr10hrtwo 20hr22hr24hr26hrIn〔20〕:df。sum(level1,axis1) Out〔20〕: green red one a 4hr2hrb 12hr10hrtwo a 20hr18hrb 28hr26pandas数据可视化 In〔6〕:importnumpyasnpfrompandasimportSeries,DataFrameimportpandasaspdimportmatplotlibasmplimportmatplotlib。pyplotasplt导入matplotlib库matplotlibinline魔法函数 In〔7〕:sSeries(np。random。normal(size10))s Out〔7〕:00。46814211。40892720。18254830。04302340。12143750。53919460。01142370。93820781。58946090。460753dtype:float64 In〔8〕:s。plot() Out〔8〕:matplotlib。axes。subplots。AxesSubplotat0xafc5390 In〔10〕:dfDataFrame({normal:np。random。normal(size100),gamma:np。random。gamma(1,size100),poisson:np。random。poisson(size100)})df。cumsum() Out〔10〕: gamma normal poisson 0hr1。804045 1。788000 0。0 1hr1。835715 0。089426 0。0 2hr3。850210 0。870177 0。0 3hr6。082898 0。902761 0。0 4hr8。837446 0。959945 1。0 5hr9。307126 1。658268 3。0 6hr9。518029 3。118419 6。0 7hr9。758011 3。861418 6。0 8hr10。481856 3。405625 6。0 9hr12。405202 4。892910 7。0 10hr13。086167 4。776206 7。0 11hr13。457807 3。217277 8。0 12hr13。574663 1。821368 9。0 13hr13。695523 2。829581 10。0 14hr13。819044 3。015490 11。0 15hr15。801080 2。629254 13。0 16hr17。043867 2。052196 14。0 17hr17。089774 3。687834 15。0 18hr17。499338 2。635491 16。0 19hr18。257891 2。636466 18。0 20hr19。101743 2。272298 19。0 21hr24。158020 0。113947 20。0 22hr25。112218 0。594266 23。0 23hr25。986628 1。326405 23。0 24hr28。383365 1。349211 23。0 25hr28。753694 1。527589 23。0 26hr28。908734 1。312111 25。0 27hr30。607696 0。228251 26。0 28hr31。081009 1。067429 27。0 29hr31。330353 1。098605 28。0 。。。 。。。 。。。 。。。 70hr72。302929 14。123995 66。0 71hr72。794689 14。860449 67。0 72hr73。629651 14。828726 67。0 73hr74。610837 14。168664 68。0 74hr78。773897 13。334949 70。0 75hr80。916582 13。722037 71。0 76hr81。994526 14。717187 72。0 77hr83。927355 13。784763 72。0 78hr86。004903 13。343261 75。0 79hr86。609627 12。151334 75。0 80hr87。199249 13。345584 77。0 81hr87。213180 12。311815 77。0 82hr87。553190 13。864232 77。0 83hr89。157662 14。439016 78。0 84hr89。213456 14。401503 80。0 85hr89。471336 15。838362 81。0 86hr89。552332 14。406933 81。0 87hr91。565291 14。520602 82。0 88hr94。179919 12。017739 82。0 89hr95。075841 13。279973 83。0 90hr95。192719 13。089789 83。0 91hr96。148316 12。268122 84。0 92hr97。146898 11。830559 84。0 93hr97。456375 13。035484 86。0 94hr99。877122 11。966609 87。0 95hr103。015620 12。313341 88。0 96hr103。116648 12。715195 88。0 97hr103。490265 12。168645 89。0 98hr103。925893 11。502630 89。0 99hr105。008619 11。193637 89。0 100rows3columns In〔11〕:df。cumsum()。plot() Out〔11〕:matplotlib。axes。subplots。AxesSubplotat0xaef4c18 In〔12〕:data{name:〔张三,李四,王五,小明,Peter〕,sex:〔female,female,male,male,male〕,year:〔2001,2001,2003,2002,2002〕,city:〔北京,上海,广州,北京,北京〕}dfDataFrame(data)df Out〔12〕: city name sex year 0hr北京 张三 female 2001hr1hr上海 李四 female 2001hr2hr广州 王五 male 2003hr3hr北京 小明 male 2002hr4hr北京 Peter male 2002hrIn〔14〕:df〔sex〕。valuecounts() Out〔14〕:male3female2Name:sex,dtype:int64 In〔16〕:df〔sex〕。valuecounts()。plot(kindbar) Out〔16〕:matplotlib。axes。subplots。AxesSubplotat0xaf1ac50 In〔18〕:df2DataFrame(np。random。randint(0,100,size(3,3)),index(one,two,three),columns〔A,B,C〕)df2 Out〔18〕: A B C one 29hr5hr88hrtwo 35hr42hr43hrthree 87hr85hr76hrIn〔19〕:df2。plot(kindbarh) Out〔19〕:matplotlib。axes。subplots。AxesSubplotat0xb5b53c8 In〔20〕:df2。plot(kindbarh,stackedTrue,alpha0。5) Out〔20〕:matplotlib。axes。subplots。AxesSubplotat0xd576cf8 In〔28〕:sSeries(np。random。normal(size100))s。hist(bins20,gridFalse) Out〔28〕:matplotlib。axes。subplots。AxesSubplotat0xcf9f5c0 In〔29〕:s。plot(kindkde) Out〔29〕:matplotlib。axes。subplots。AxesSubplotat0xd266710 In〔31〕:df3DataFrame(np。arange(10),columns〔X〕)df3〔Y〕2df3〔X〕5df3 Out〔31〕: X Y 0hr0hr5hr1hr1hr7hr2hr2hr9hr3hr3hr11hr4hr4hr13hr5hr5hr15hr6hr6hr17hr7hr7hr19hr8hr8hr21hr9hr9hr23hrIn〔34〕:df3。plot(kindscatter,xX,yY) Out〔34〕:matplotlib。axes。subplots。AxesSubplotat0xb1f98d0 In〔51〕:importnumpyasnpfrompandasimportSeries,DataFrameimportpandasaspdimportseabornassns导入seaborn库 In〔52〕:tipssns。loaddataset(tips)tips。head() Out〔52〕: totalbill tip sex smoker day time size 0hr16。99 1。01 Female No Sun Dinner 2hr1hr10。34 1。66 Male No Sun Dinner 3hr2hr21。01 3。50 Male No Sun Dinner 3hr3hr23。68 3。31 Male No Sun Dinner 2hr4hr24。59 3。61 Female No Sun Dinner 4hrIn〔54〕:tips。shape Out〔54〕:(244,7) In〔55〕:tips。describe() Out〔55〕: totalbill tip size count 244。000000 244。000000 244。000000 mean 19。785943 2。998279 2。569672 std 8。902412 1。383638 0。951100 min 3。070000 1。000000 1。000000 25 13。347500 2。000000 2。000000 50 17。795000 2。900000 2。000000 75 24。127500 3。562500 3。000000 max 50。810000 10。000000 6。000000 In〔56〕:tips。info()classpandas。core。frame。DataFrameRangeIndex:244entries,0to243Datacolumns(total7columns):totalbill244nonnullfloat64tip244nonnullfloat64sex244nonnullcategorysmoker244nonnullcategoryday244nonnullcategorytime244nonnullcategorysize244nonnullint64dtypes:category(4),float64(2),int64(1)memoryusage:7。2KB In〔57〕:tips。plot(kindscatter,xtotalbill,ytip) Out〔57〕:matplotlib。axes。subplots。AxesSubplotat0xe034828 In〔62〕:maletiptips〔tips〔sex〕Male〕〔tip〕。mean()maletip Out〔62〕:3。0896178343949052 In〔63〕:femaletiptips〔tips〔sex〕Female〕〔tip〕。mean()femaletip Out〔63〕:2。833448275862069 In〔66〕:sSeries(〔maletip,femaletip〕,index〔male,female〕)s Out〔66〕:male3。089618female2。833448dtype:float64 In〔67〕:s。plot(kindbar) Out〔67〕:matplotlib。axes。subplots。AxesSubplotat0xddd27f0 In〔68〕:tips〔day〕。unique() Out〔68〕:〔Sun,Sat,Thur,Fri〕Categories(4,object):〔Sun,Sat,Thur,Fri〕 In〔71〕:suntiptips〔tips〔day〕Sun〕〔tip〕。mean()sattiptips〔tips〔day〕Sat〕〔tip〕。mean()thurtiptips〔tips〔day〕Thur〕〔tip〕。mean()fritiptips〔tips〔day〕Fri〕〔tip〕。mean() In〔72〕:sSeries(〔thurtip,fritip,sattip,suntip〕,index〔Thur,Fri,Sat,Sun〕)s Out〔72〕:Thur2。771452Fri2。734737Sat2。993103Sun3。255132dtype:float64 In〔73〕:s。plot(kindbar) Out〔73〕:matplotlib。axes。subplots。AxesSubplotat0xdefe5c0 In〔74〕:tips〔percenttip〕tips〔tip〕(tips〔totalbill〕tips〔tip〕)tips。head(10) Out〔74〕: totalbill tip sex smoker day time size percenttip 0hr16。99 1。01 Female No Sun Dinner 2hr0。056111 1hr10。34 1。66 Male No Sun Dinner 3hr0。138333 2hr21。01 3。50 Male No Sun Dinner 3hr0。142799 3hr23。68 3。31 Male No Sun Dinner 2hr0。122638 4hr24。59 3。61 Female No Sun Dinner 4hr0。128014 5hr25。29 4。71 Male No Sun Dinner 4hr0。157000 6hr8。77 2。00 Male No Sun Dinner 2hr0。185701 7hr26。88 3。12 Male No Sun Dinner 4hr0。104000 8hr15。04 1。96 Male No Sun Dinner 2hr0。115294 9hr14。78 3。23 Male No Sun Dinner 2hr0。179345 In〔76〕:tips〔percenttip〕。hist(bins50) Out〔76〕:matplotlib。axes。subplots。AxesSubplotat0xe264710