重磅OpenAI最新解密,ChatGPT的本质是无损压缩器
费斌杰熵简科技CEO
作者费斌杰熵简科技CEO
自从去年12月ChatGPT问世以来,AI的发展正式进入快车道,整个行业开始按日迭代。从1957年以来,人类在经历了数轮AI浪潮后,这次通用人工智能(AGI)是真的要来了。
我们团队在2月发表了对ChatGPT技术原理的深度剖析,得到了业内专家朋友们的广泛认可。但随着研究的深入,越来越多的问题浮出水面:
ChatGPT强大的一个重要原因是大语言模型的涌现能力(EmergentAbilities),那么涌现能力究竟为何产生呢?
GPT5会有哪些意想不到的性能表现?
AGI会走向何方,对社会经济活动又会产生怎样的影响?
在这篇文章中,我们针对以上问题进行深入探讨,并且给出尽可能详实的分析过程。本文浓缩了我们团队的研究成果,共分为以下四个部分:
大语言模型的本质:性能强大的无损压缩器
视觉信息是知识的富矿:从文本走向多模态
大数据时代的数据荒:运用合成数据破局
AGI对人类社会经济活动影响:展望与思考
写在前面:熵简科技是一家专注于帮助资管机构实现投研数字化的科技公司,主要客户包括中金、中信、广发、建投、国信、招商、华夏、嘉实、银华、博时、汇添富、兴全、易方达等证券与基金公司。我是熵简科技的创始人费斌杰,但在写下这篇文章的时候,我更多是纯粹作为一个在新技术浪潮下,既兴奋又紧张的见证者和参与者,尽可能客观地评述分析这项新技术对我们行业会带来怎样的影响与冲击。以下分享是我们熵简团队的研究成果,LLM技术发展日新月异,当前时点的分析难免错漏,欢迎各位指正。
大语言模型的本质:性能强大的无损压缩器
在最近OpenAI的学术分享会中,JackRae提出了一个重要的论断:大语言模型的本质,其实是一个性能强大的数据无损压缩器。
LLMCompression
这个论断并不是很直观,但却揭开了通用人工智能非常重要的一角,值得高度重视。为了让大家理解这个观点,我们从学习这件事本身来探讨。
上个世纪以来,人类普遍认为学习是一种人类特有的才能,机器无法真正地掌握学习能力。随着深度神经网络技术的发展,人们通过构建人工神经元来模拟大脑中的生物神经元,从而使得机器开始具备一定的学习能力。
图:生物神经元(左)与人工神经元(右)对比
而现在,OpenAI得出了关于学习的最新结论:学习这件事本身,可以理解为对有效信息进行无损压缩的过程。
为了更好地理解这个观点,让我们来做一个思想实验。假设我们需要搭建一个模型,用来处理英译中的翻译任务。
最简单粗暴的方式,就是列举出每个英文单词对应的中文,即rulebasedmapping。假设我们枚举完了所有英文单词的中文对照表,写出了一本1000页的词典。
但通过这本词典,我们真的能够有效完成所有英译中的翻译任务吗?答案是否定的。因为基于规则的映射系统是非常脆弱的,只要在翻译过程中遇到一个之前没有遇到过的新单词,系统就崩溃了。
因此,这个模型的翻译性能是很弱的,可以理解为该模型没有真正学会翻译。
重点来了,现在请你把这本1000页的词典,无损压缩成一本200页的手册。字数减少了,但是信息量不能少,因此你不能简单地从1000页中抽取200页构成一本小词典,而需要通过对数据进行高维编码,从而实现无损压缩。
经过压缩后的这本200页的手册中,不再是简单的单词映射,而是包含了主谓宾、定状补、虚拟语气、时态、单复数在内的英语语法。相比于一本词典来说,它更像是一本教材。
图:降低任务描述长度等价于增加对任务的理解
注意,在这个压缩的过程中,学习作为一种隐式的过程,起到了知识编码的作用。通过把一本1000页的词典压缩成一本200页的手册,模型学会了英语语法,掌握了英译中的知识。通过这个例子,不难发现:学习的本质,可以理解为对有效信息进行无损压缩的过程。压缩率越大,学习的效果就越好。
根据OpenAI的最新观点,基于GPT的大语言模型的是性能卓越的数据压缩器。语言模型的本质,是不断预测下一个词的概率分布,从而完成生成式任务。
但是从无损压缩的角度来看,如果模型对下一个词的预测更加准确,就意味着其对知识的理解更深,从而获得对这个世界更高的分辨率。随着模型规模的提升,基于信息熵计算出的压缩率也会逐渐提升,这就解释了为什么模型的性能会随着规模的增加而增加。
而提升模型的压缩率并不只有增加规模这一种方法,正如JackRae所言:Scalingisnotallyouneed。更好的算法架构、基于Plugin的工具集成、合成数据的运用都能够有效提升模型的压缩率,从而实现模型性能的进一步提升。
图:提升模型压缩率的几种方法
视觉信息是知识的富矿:从文本走向多模态
既然大语言模型发展的目标,是不断提升对有效信息的压缩率。那么自然地,如何获取尽可能多的有效信息,就成为了一个重要命题。
人类是一种拥有语言能力的视觉动物,我们大脑皮层中约有三分之一的区域是用于视觉信息解析的。因此,视觉信息是人类知识的富矿。
图:大脑皮层中的视觉信号中枢
举个例子,我们都知道太阳从东边升起,西边落下,这是一个常识。但如果分析一下我们是如何学到这个知识的,我相信绝大多数人是通过眼睛亲眼看到的,而不仅仅是通过书本学习到的。
推而广之,视觉信息往往是人类知识的源头。由于人类具备语言和写作能力,人们会把通过视觉获取到的信息慢慢地转变为文本形态传播出来。
因此,如果把人类已获得的全部知识看作一座冰山,那么以文本为载体的数据只是冰山一角,而以图像、视频为载体的数据才是人类知识真正的富矿。这也是OpenAI的GPT5会基于海量互联网视频进行学习的原因。
具体而言,如果给模型看大量的天文观测视频,模型有可能学习出一个隐式的开普勒定律;给模型看大量的带电粒子运动轨迹,模型可能会学习出洛伦兹力的数学表达;当然,我们也可以更大胆一些,如果给模型学习强子对撞机的海量实验数据,模型是否可以解开希格斯玻色子的秘密,从而解答物质的质量之谜,这一切都相当值得期待。
图:基本粒子模型与上帝粒子
大数据时代的数据荒:运用合成数据破局
虽然人类社会早已进入了大数据时代,全球经济活动产生了大量数据资产,但是LLM所需的训练集膨胀速度更快。根据预测,到2026年文本数据将被训练完,图像数据将在2040年左右用完。
图:大语言模型对互联网存量数据消耗的预测
这对于大力出奇迹的大语言模型来说,并不是个好消息。如果训练集体量不够,模型便无法继续scalingup,从而不断提升性能天花板。
这个时候,合成数据成为了重要的破局方法。顾名思义,合成数据(SyntheticData)指的是通过算法生成的训练集,而非从现实世界中采集到的样本。
根据Gartner的预测,2026年模型训练数据中的50将由合成数据构成;2030年合成数据的质量将全面超过人类标注的真实数据。
图:Gartner对合成数据发展的预测
OpenAI在GPT4的技术文档中重点提到了合成数据的应用,可见OpenAI对该领域的重视。
图:GPT4技术报告中对合成数据应用的探讨
更进一步来看,如果合成数据的质量能够全面超越人类标注的质量,那么未来AGI便可以自我迭代,进化的速度会大幅提升。到这时,人类可能就成为AGI的启动脚本(BootLoader)了。
这不禁让我联想到马斯克曾在2014年做出的预言。他认为从物种进化的尺度来看,以人类为代表的碳基生命可能只是以AI为代表的硅基生命的启动脚本。
这个预言令人毛骨悚然。放在14年那会儿,绝大部分人会认为这是危言耸听。但是当下我们再回头审视这个判断,不难发现这与合成数据的发展目标不谋而合。
合成数据领域的突破,可能成为AGI跨过奇点的重要里程碑,让我们拭目以待。
图:Musk在14年对AI发展的判断
AGI对人类社会经济活动影响:展望与思考
在刚结束的GTC大会上,NVIDIA的CEO黄仁勋将ChatGPT的诞生类比为移动互联网的iPhone时刻。但从人类科技发展史的尺度来看,我认为ChatGPT的诞生更像是拉开了第四次工业革命的序幕,会带来社会生产力和生产关系的质变。
虽然有点不恰当,但如果把人类看作一台生物化学计算机,我们不妨比较一下人类与AGI的效率异同:
首先,从通信效率的角度来看,人类之间的数据传输主要依靠交流,而交流的本质是以空气为媒介的机械波。与此相对,AGI之间的数据传输则主要通过GPU之间的NVLink,数据传输的带宽显著提升。
其次,从工作效率的角度来看,人类受限于生物体内复杂的免疫机制、神经元修复机制等原理,需要保持充足的睡眠,才可以换取白天良好的工作状态。但是AGI只需要有充足的能源供给,便可以做到724的高强度作业,工作效率显著提升。
再次,从协作效率的角度来看,由100个人组成的团队整体的工作效率往往会低于10人小组产出总量的10倍。随着组织人员规模的增加,人均产出不可避免的下降,需要通过富有经验的管理艺术才能激发团队协作的活力。相反,对于AGI来说,增加运算节点便可以扩大产能,并不会出现边际效用递减的管理与协作难题。
图:人工智能与人类智能的发展曲线
以上分析了相比于人类而言,AGI的生产力优势。但是人类在以下几个重点方面依然具备着不可替代的价值:
首先,虽然AGI在知识的广度上会远超人类,但是在具体领域的知识深度上,人类目前依然占据优势。
以金融投资为例,一位资深的投资经理可以根据不完整的市场信息做出模糊推断,从而获得超额收益;以科学研究为例,一位优秀的科学家可以从看似无关紧要的实验误差中推断出全新的理论体系。这些都是当前AGI难以企及的。
其次,社会经济活动的运转,高度依赖于人与人之间的信任,这种信任是AGI难以取代的。比如当你去医院看病的时候,即使AGI能够根据你的症状描述做出相当准确的诊断,你依然大概率会拿着诊断结果去咨询边上的人类医生,寻求一个值得信任的诊疗建议。类似的信任机制构成了医疗、教育、金融等领域中经济活动的重要基石。
随着AGI的发展,许多经济活动的游戏规则会悄然发生改变,而这个规则改变的契机,则会以AGI在该领域超过人类中的最强者作为分界线,正如AlphaGo的诞生彻底改变了围棋界的规则一样。
结语
这是最好的时代,也是最坏的时代。悲观者可能永远正确,但确实毫无意义。
纵观历史,人类科技史的发展并不是连续的,而是跳跃的。或许我们正在经历的正是一次人类科技水平的跳跃,无论如何,能够亲眼见证并参与其中,我们都是幸运的。
最后,分享一句我特别喜欢的话,这是OpenAI的CEOSamAltman在30岁生日时给自己的人生建议:
Thedaysarelongbutthedecadesareshort。
参考文献
〔1〕Power,Alethea,etal。Grokking:Generalizationbeyondoverfittingonsmallalgorithmicdatasets。arXivpreprintarXiv:2201。02177(2022)。
〔2〕Bubeck,Sbastien,etal。Sparksofartificialgeneralintelligence:Earlyexperimentswithgpt4。arXivpreprintarXiv:2303。12712(2023)。
〔3〕Eloundou,Tyna,etal。Gptsaregpts:Anearlylookatthelabormarketimpactpotentialoflargelanguagemodels。arXivpreprintarXiv:2303。10130(2023)。
〔4〕Wu,Shijie,etal。BloombergGPT:ALargeLanguageModelforFinance。arXivpreprintarXiv:2303。17564(2023)。
〔5〕Liang,Percy,etal。Holisticevaluationoflanguagemodels。arXivpreprintarXiv:2211。09110(2022)。
〔6〕Brown,Tom,etal。Languagemodelsarefewshotlearners。Advancesinneuralinformationprocessingsystems33(2020):18771901。
〔7〕Kaplan,Jared,etal。Scalinglawsforneurallanguagemodels。arXivpreprintarXiv:2001。08361(2020)。
〔8〕Zhou,Yongchao,etal。Largelanguagemodelsarehumanlevelpromptengineers。arXivpreprintarXiv:2211。01910(2022)。
〔9〕Wei,Jason,etal。Emergentabilitiesoflargelanguagemodels。arXivpreprintarXiv:2206。07682(2022)。
〔10〕Zellers,Rowan,etal。HellaSwag:Canamachinereallyfinishyoursentence?。arXivpreprintarXiv:1905。07830(2019)。
〔11〕Barocas,Solon,MoritzHardt,andArvindNarayanan。Fairnessinmachinelearning。Nipstutorial1(2017):2017。
〔12〕Ouyang,Long,etal。Traininglanguagemodelstofollowinstructionswithhumanfeedback。AdvancesinNeuralInformationProcessingSystems35(2022):2773027744。
〔13〕Devlin,Jacob,etal。Bert:Pretrainingofdeepbidirectionaltransformersforlanguageunderstanding。arXivpreprintarXiv:1810。04805(2018)。
本文来自微信公众号熵简科技ValueSimplex(ID:ShangjianTech),作者:熵简CEO费斌杰,36氪经授权发布。
金鸡奖红毯生图baby倪妮比拼高定仙裙,关晓彤露腰衬衫造型迷第35届电影金鸡奖闭幕红毯在厦门开启。继飞天奖、金鹰奖两大电视圈盛会之后,2022年电影圈盛会也来啦,了解了一下嘉宾阵容,不愧是金鸡奖,堪称年底星光最为璀璨的红毯活动。……
超模詹娜身穿爆款轻奢款大衣A4小蛮腰外露1。2米大长腿堪称一大家好我是书香,今天是2022年11月11日上午。众所周知肯豆詹娜是卡戴珊家族的超模金四妹,只要一说起卡戴珊家族,大家都会感慨卡戴珊家族美女们,最爱和NBA篮球巨星谈恋爱……
12。20nba精选赛事分析1。骑士v爵士骑士主场有很强的防守能力,十场出了八场小。爵士最近进攻也不稳定,所以按概率再相信骑士靠防守赢得胜利,看双方小(小于221。5分)。2。老鹰v魔术明天老鹰穆雷……
让恐龙灭绝的是小行星还是它自己?霸王龙在它的园子里徜徉,它那十余米的体型,配上尖锐的牙齿与厚实的皮肤,直叫周围的生物畏而远之,没有谁敢打它的主意。地球诞生以后,包括火山、地震在内的各种地质事件层出不穷,……
关于那些开历史倒车的言论最近多了很多想开历史倒车的言论,我总结了一下他们的意思。就是希望把别人封起来,封一辈子都行,最好羊了直接拉去挖个坑埋了,只要自己的小圈子能自由出去浪而又不被感染就好。一但自己那……
世界主要国家推动数字化转型举措近年来,新一代信息通信技术与制造业加速融合渗透,各主要国家和地区纷纷开展布局,运用工业互联网、人工智能等新兴技术推动制造业数字化转型已成普遍共识。虽然各国发布的战略和政策提法各……
韩国人工智能服务帮助与已故亲人对话,获CES创新奖使用人工智能来帮助人们和过世者对话的概念并不新颖,有的公司开发了聊天机器人,有的尝试重现面部表情,有的模仿录音片段中的声音。DeepBrainAI则将所有这些功能集中到一个单一……
肖战晒出泳池大片,线条明显胸肌吸睛,网友直呼过年了这段时间肖战虽然没有拍戏,不过也没有闲着,一直在默默努力地工作,也给我们带来了多场直播秀,不过在八月临近结束,暑期也即将过去,怎么能不交一下暑期作业呢?8月30日肖战更新……
清华大学发布首个课程学习开源库CurML来源:机器之心本文约2000字,建议阅读5分钟清华大学朱文武团队发布全球首个课程学习开源库CurML,提供课程学习算法的支持平台。如何应用课程学习策略指导机器……
经济下行压力之下,北京两大支柱产业仍保持明显增长欢迎在今日头条关注城市情报栈。北京的GDP在全国各大城市中排名第二,仅次于上海。2021年,北京GDP更进一步,突破了4万亿大关!如此庞大的经济体量,靠的是哪些行业……
杨紫最新营业照,花色衬衫配短裙长靴,复古又潮流杨紫是大家非常喜欢的一位女演员,在作品中,她挑选的角色都很适合她,演绎起来情感也拿捏得很到位,自出道以来,为大家塑造了很多令人记忆深刻的角色。而在时尚感方面,杨紫也是不输任何一……
女排世锦赛即时战报北京时间9月25日凌晨,2022年女排世锦赛继续进行,美国、多米尼加、巴西分别战胜各自对手迎得了开门红,详细赛果如下:一、小组赛C组,美国30哈萨克斯坦(2516,251……