幼儿饰品瑜伽美体用品微软
投稿投诉
微软创意
爱情通信
用品婚姻
爱好看病
美体软件
影音星座
瑜伽周边
星座办公
饰品塑形
搞笑减肥
幼儿两性
智家潮品

Python数据聚合和分组

  frompandasimportSeries,DataFrameimportpandasaspdimportnumpyasnpimportmatplotlib。pyplotaspltimportmatplotlibasmplimportseabornassns导入seaborn库,并取别名为snsmatplotlibinline在Ipython编译器里直接使用,功能是可以内嵌绘图,并且可以省略掉plt。show()这一步
  In〔2〕:pd。setoption(mode。chainedassignment,None)关闭警告
  1、从github上下载这个文件,这是官方给的范例数据库:https:github。commwaskomseaborndata2、找到loaddataset()在本地的数据库地址。getdatahome()函数的作用就是获取loaddataset()的数据库地址。sns。utils。getdatahome()之后就会出现已下形式的地址
  你的驱动器:Users你的用户名seaborndata例如:‘C:Usersuser1seaborndata’3、将下载的文件夹解压,然后把里面的内容复制到数据库地址下。
  In〔3〕:tipssns。loaddataset(tips)loaddataset(tips)函数默认首先从本地库调取tips。csv文件tips。head()
  Out〔3〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr1hr10。34
  1。66
  Male
  No
  Sun
  Dinner
  3hr2hr21。01
  3。50
  Male
  No
  Sun
  Dinner
  3hr3hr23。68
  3。31
  Male
  No
  Sun
  Dinner
  2hr4hr24。59
  3。61
  Female
  No
  Sun
  Dinner
  4数据分组groupby分组
  In〔4〕:groupedtips〔tip〕。groupby(tips〔sex〕)grouped返回的grouped为GroupBy对象,是保存的中间数据,
  Out〔4〕:pandas。core。groupby。SeriesGroupByobjectat0x000000000BCF8160
  In〔5〕:grouped。mean()对该对象调用mean方法即可返回数据
  Out〔5〕:sexMale3。089618Female2。833448Name:tip,dtype:float64
  In〔7〕:datemeantips〔tip〕。groupby(〔tips〔day〕,tips〔time〕〕)。mean()通过多个分组键进行计算,通过day和time,计算小费平均值datemean
  Out〔7〕:daytimeThurLunch2。767705Dinner3。000000FriLunch2。382857Dinner2。940000SatDinner2。993103SunDinner3。255132Name:tip,dtype:float64
  In〔8〕:datemean。plot(kindbarh)barh为柱形图
  Out〔8〕:matplotlib。axes。subplots。AxesSubplotat0x7bff1d0
  In〔9〕:tips。dtypes
  Out〔9〕:totalbillfloat64tipfloat64sexcategorysmokercategorydaycategorytimecategorysizeint64dtype:object
  In〔14〕:forname,groupintips。groupby(tips〔sex〕):print(name)print(group)Maletotalbilltipsexsmokerdaytimesize110。341。66MaleNoSunDinner3221。013。50MaleNoSunDinner3323。683。31MaleNoSunDinner2525。294。71MaleNoSunDinner468。772。00MaleNoSunDinner2726。883。12MaleNoSunDinner4815。041。96MaleNoSunDinner2914。783。23MaleNoSunDinner21010。271。71MaleNoSunDinner21215。421。57MaleNoSunDinner21318。433。00MaleNoSunDinner41521。583。92MaleNoSunDinner21716。293。71MaleNoSunDinner31920。653。35MaleNoSatDinner32017。924。08MaleNoSatDinner22339。427。58MaleNoSatDinner42419。823。18MaleNoSatDinner22517。812。34MaleNoSatDinner42613。372。00MaleNoSatDinner22712。692。00MaleNoSatDinner22821。704。30MaleNoSatDinner2309。551。45MaleNoSatDinner23118。352。50MaleNoSatDinner43417。783。27MaleNoSatDinner23524。063。60MaleNoSatDinner33616。312。00MaleNoSatDinner33818。692。31MaleNoSatDinner33931。275。00MaleNoSatDinner34016。042。24MaleNoSatDinner34117。462。54MaleNoSunDinner2。。。。。。。。。。。。。。。。。。。。。。。1957。561。44MaleNoThurLunch219610。342。00MaleYesThurLunch219913。512。00MaleYesThurLunch220018。714。00MaleYesThurLunch320420。534。00MaleYesThurLunch420626。593。41MaleYesSatDinner320738。733。00MaleYesSatDinner420824。272。03MaleYesSatDinner221030。062。00MaleYesSatDinner321125。895。16MaleYesSatDinner421248。339。00MaleNoSatDinner421628。153。00MaleYesSatDinner521711。591。50MaleYesSatDinner22187。741。44MaleYesSatDinner222012。162。20MaleYesFriLunch22228。581。92MaleYesFriLunch122413。421。58MaleYesFriLunch222720。453。00MaleNoSatDinner422813。282。72MaleNoSatDinner223024。012。00MaleYesSatDinner423115。693。00MaleYesSatDinner323211。613。39MaleNoSatDinner223310。771。47MaleNoSatDinner223415。533。00MaleYesSatDinner223510。071。25MaleNoSatDinner223612。601。00MaleYesSatDinner223732。831。17MaleYesSatDinner223929。035。92MaleNoSatDinner324122。672。00MaleYesSatDinner224217。821。75MaleNoSatDinner2〔157rowsx7columns〕Femaletotalbilltipsexsmokerdaytimesize016。991。01FemaleNoSunDinner2424。593。61FemaleNoSunDinner41135。265。00FemaleNoSunDinner41414。833。02FemaleNoSunDinner21610。331。67FemaleNoSunDinner31816。973。50FemaleNoSunDinner32120。292。75FemaleNoSatDinner22215。772。23FemaleNoSatDinner22919。653。00FemaleNoSatDinner23215。063。00FemaleNoSatDinner23320。692。45FemaleNoSatDinner43716。933。07FemaleNoSatDinner35110。292。60FemaleNoSunDinner25234。815。20FemaleNoSunDinner45726。411。50FemaleNoSatDinner26616。452。47FemaleNoSatDinner2673。071。00FemaleYesSatDinner17117。073。00FemaleNoSatDinner37226。863。14FemaleYesSatDinner27325。285。00FemaleYesSatDinner27414。732。20FemaleNoSatDinner28210。071。83FemaleNoThurLunch18534。835。17FemaleNoThurLunch4925。751。00FemaleYesFriDinner29316。324。30FemaleYesFriDinner29422。753。25FemaleNoFriDinner210011。352。50FemaleYesFriDinner210115。383。00FemaleYesFriDinner210244。302。50FemaleYesSatDinner310322。423。48FemaleYesSatDinner2。。。。。。。。。。。。。。。。。。。。。。。15529。855。14FemaleNoSunDinner515725。003。75FemaleNoSunDinner415813。392。61FemaleNoSunDinner216216。212。00FemaleNoSunDinner316417。513。00FemaleYesSunDinner216810。591。61FemaleYesSatDinner216910。632。00FemaleYesSatDinner21789。604。00FemaleYesSunDinner218620。903。50FemaleYesSunDinner318818。153。50FemaleYesSunDinner319119。814。19FemaleYesThurLunch219743。115。00FemaleYesThurLunch419813。002。00FemaleYesThurLunch220112。742。01FemaleYesThurLunch220213。002。00FemaleYesThurLunch220316。402。50FemaleYesThurLunch220516。473。23FemaleYesThurLunch320912。762。23FemaleYesSatDinner221313。272。50FemaleYesSatDinner221428。176。50FemaleYesSatDinner321512。901。10FemaleYesSatDinner221930。143。09FemaleYesSatDinner422113。423。48FemaleYesFriLunch222315。983。00FemaleNoFriLunch322516。272。50FemaleYesFriLunch222610。092。00FemaleYesFriLunch222922。122。88FemaleYesSatDinner223835。834。67FemaleNoSatDinner324027。182。00FemaleYesSatDinner224318。783。00FemaleNoThurDinner2〔87rowsx7columns〕
  In〔15〕:tips。groupby(tips〔sex〕)。size()size方法可返回各分组的大小
  Out〔15〕:sexMale157Female87dtype:int64
  In〔16〕:tips。groupby(tips〔sex〕)。count()
  Out〔16〕:
  totalbill
  tip
  smoker
  day
  time
  size
  sex
  Male
  157hr157hr157hr157hr157hr157hrFemale
  87hr87hr87hr87hr87hr87按照列名分组
  In〔19〕:smokermeantips。groupby(smoker)。mean()smokermean
  Out〔19〕:
  totalbill
  tip
  size
  smoker
  Yes
  20。756344
  3。008710
  2。408602
  No
  19。188278
  2。991854
  2。668874
  In〔21〕:smokermean〔tip〕。plot(kindbar)
  Out〔21〕:matplotlib。axes。subplots。AxesSubplotat0x811ef98
  In〔24〕:sizemean1tips〔tip〕。groupby(tips〔size〕)。mean()sizemean1
  Out〔24〕:size11。43750022。58230833。39315844。13540554。02800065。225000Name:tip,dtype:float64
  In〔25〕:sizemean2tips。groupby(size)〔tip〕。mean()语法糖sizemean2
  Out〔25〕:size11。43750022。58230833。39315844。13540554。02800065。225000Name:tip,dtype:float64
  In〔27〕:sizemean2。plot()
  Out〔27〕:matplotlib。axes。subplots。AxesSubplotat0xbe269e8
  In〔29〕:dfDataFrame(np。arange(16)。reshape(4,4))df
  Out〔29〕:
  0hr1hr2hr3hr0hr0hr1hr2hr3hr1hr4hr5hr6hr7hr2hr8hr9hr10hr11hr3hr12hr13hr14hr15按列表或元组分组
  In〔30〕:list1〔a,b,a,b〕
  In〔32〕:df。groupby(list1)。sum()
  Out〔32〕:
  0hr1hr2hr3hra
  8hr10hr12hr14hrb
  16hr18hr20hr22按字典分组
  In〔33〕:dfDataFrame(np。random。normal(size(6,6)),index〔a,b,c,A,B,C〕)df
  Out〔33〕:
  0hr1hr2hr3hr4hr5hra
  0。031512
  0。896280
  0。000981
  0。558886
  1。574150
  0。030435
  b
  0。774907
  0。020968
  0。575220
  0。566894
  1。326251
  0。775521
  c
  1。437972
  0。699240
  1。064924
  0。235661
  1。841803
  1。238480
  A
  1。756554
  0。652186
  1。149668
  0。192652
  2。202044
  0。366539
  B
  0。575227
  0。299196
  0。120483
  2。665255
  0。432872
  1。627597
  C
  0。481407
  0。983928
  1。270371
  1。581129
  1。568339
  2。122324
  In〔34〕:dict1{a:one,A:one,b:two,B:two,c:three,C:three}
  In〔35〕:df。groupby(dict1)。sum()
  Out〔35〕:
  0hr1hr2hr3hr4hr5hrone
  1。725042
  0。244095
  1。148687
  0。751538
  0。627894
  0。396974
  three
  1。919380
  1。683169
  0。205448
  1。345468
  0。273464
  0。883844
  two
  0。199680
  0。320164
  0。454738
  3。232148
  1。759122
  2。403117按函数分组
  In〔37〕:dfDataFrame(np。random。randn(4,4))df
  Out〔37〕:
  0hr1hr2hr3hr0hr0。803694
  1。242886
  0。393840
  1。137829
  1hr1。048137
  0。931402
  0。262153
  0。609839
  2hr0。135432
  0。739250
  1。685265
  1。562063
  3hr0。863777
  0。687589
  1。901485
  0。224359
  In〔38〕:defjug(x):ifx0:returnaelse:returnb
  In〔41〕:df〔3〕。groupby(df〔3〕。map(jug))。sum()
  Out〔41〕:3a2。171902b1。362188Name:3,dtype:float64
  In〔42〕:dfDataFrame(np。arange(16)。reshape(4,4),index〔〔one,one,two,two〕,〔a,b,a,b〕〕,columns〔〔apple,apple,orange,orange〕,〔red,green,red,green〕〕)层次化索引,可通过级别进行分组,通过level参数,输入编号或名称即可df
  Out〔42〕:
  apple
  orange
  red
  green
  red
  green
  one
  a
  0hr1hr2hr3hrb
  4hr5hr6hr7hrtwo
  a
  8hr9hr10hr11hrb
  12hr13hr14hr15hrIn〔43〕:df。groupby(level1)。sum()
  Out〔43〕:
  apple
  orange
  red
  green
  red
  green
  a
  8hr10hr12hr14hrb
  16hr18hr20hr22hrIn〔44〕:df。groupby(level1,axis1)。sum()在列上进行分组(axis1)
  Out〔44〕:
  green
  red
  one
  a
  4hr2hrb
  12hr10hrtwo
  a
  20hr18hrb
  28hr26聚合运算聚合函数
  In〔47〕:maxtiptips。groupby(sex)〔tip〕。max()通过性别分组,计算小费的最大值maxtip
  Out〔47〕:sexMale10。0Female6。5Name:tip,dtype:float64
  In〔48〕:maxtip。plot(kindbar)
  Out〔48〕:matplotlib。axes。subplots。AxesSubplotat0xcb046a0
  In〔50〕:dfDataFrame(np。arange(16)。reshape(4,4))df
  Out〔50〕:
  0hr1hr2hr3hr0hr0hr1hr2hr3hr1hr4hr5hr6hr7hr2hr8hr9hr10hr11hr3hr12hr13hr14hr15hrIn〔53〕:list1〔a,b,a,b〕df。groupby(list1)。quantile(0。5)quantile分位数函数
  Out〔53〕:
  0。5
  0hr1hr2hr3hra
  4。0
  5。0
  6。0
  7。0
  b
  8。0
  9。0
  10。0
  11。0
  In〔4〕:defgetrange(x):returnx。max()x。min()
  In〔5〕:tipsrangetips。groupby(sex)〔tip〕。agg(getrange)常用于调用groupby()函数之后,对数据做一些聚合操作,包括sum,min,max以及其他一些聚合函数tipsrange
  Out〔5〕:sexMale9。0Female5。5Name:tip,dtype:float64
  In〔6〕:tipsrange。plot(kindbar)
  Out〔6〕:matplotlib。axes。subplots。AxesSubplotat0xb9cef60
  多函数应用
  In〔13〕:tips。groupby(〔sex,smoker〕)〔tip〕。agg(〔mean,std,getrange〕)对agg参数传入多函数列表,即可完成一列的多函数运算
  Out〔13〕:
  mean
  std
  getrange
  sex
  smoker
  Male
  Yes
  3。051167
  1。500120
  9。00
  No
  3。113402
  1。489559
  7。75
  Female
  Yes
  2。931515
  1。219916
  5。50
  No
  2。773519
  1。128425
  4。20
  In〔15〕:tips。groupby(〔sex,smoker〕)〔tip〕。agg(〔(tipmean,mean),(Range,getrange)〕)不想使用默认的运算函数列名,可以元组的形式传入,前面为名称,后面为聚合函数
  Out〔15〕:
  tipmean
  Range
  sex
  smoker
  Male
  Yes
  3。051167
  9。00
  No
  3。113402
  7。75
  Female
  Yes
  2。931515
  5。50
  No
  2。773519
  4。20
  In〔16〕:tips。groupby(〔day,time〕)〔totalbill,tip〕。agg(〔(tipmean,mean),(Range,getrange)〕)对多列进行多聚合函数运算时,会产生层次化索引
  Out〔16〕:
  totalbill
  tip
  tipmean
  Range
  tipmean
  Range
  day
  time
  Thur
  Lunch
  17。664754
  35。60
  2。767705
  5。45
  Dinner
  18。780000
  0。00
  3。000000
  0。00
  Fri
  Lunch
  12。845714
  7。69
  2。382857
  1。90
  Dinner
  19。663333
  34。42
  2。940000
  3。73
  Sat
  Dinner
  20。441379
  47。74
  2。993103
  9。00
  Sun
  Dinner
  21。410000
  40。92
  3。255132
  5。49
  In〔17〕:tips。groupby(〔day,time〕)〔totalbill,tip〕。agg({totalbill:sum,tip:mean})对不同列使用不同的函数运算,可以通过字典来定义映射关系
  Out〔17〕:
  totalbill
  tip
  day
  time
  Thur
  Lunch
  1077。55
  2。767705
  Dinner
  18。78
  3。000000
  Fri
  Lunch
  89。92
  2。382857
  Dinner
  235。96
  2。940000
  Sat
  Dinner
  1778。40
  2。993103
  Sun
  Dinner
  1627。16
  3。255132
  In〔18〕:tips。groupby(〔day,time〕)〔totalbill,tip〕。agg({totalbill:〔sum,mean〕,tip:mean})
  Out〔18〕:
  totalbill
  tip
  sum
  mean
  mean
  day
  time
  Thur
  Lunch
  1077。55
  17。664754
  2。767705
  Dinner
  18。78
  18。780000
  3。000000
  Fri
  Lunch
  89。92
  12。845714
  2。382857
  Dinner
  235。96
  19。663333
  2。940000
  Sat
  Dinner
  1778。40
  20。441379
  2。993103
  Sun
  Dinner
  1627。16
  21。410000
  3。255132
  In〔23〕:noindextips。groupby(〔sex,smoker〕,asindexFalse)〔tip〕。mean()希望返回的结果不以分组键为索引,通过asindexFalse可以完成noindex
  Out〔23〕:
  sex
  smoker
  tip
  0hrMale
  Yes
  3。051167
  1hrMale
  No
  3。113402
  2hrFemale
  Yes
  2。931515
  3hrFemale
  No
  2。773519
  In〔24〕:tips
  Out〔24〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr1hr10。34
  1。66
  Male
  No
  Sun
  Dinner
  3hr2hr21。01
  3。50
  Male
  No
  Sun
  Dinner
  3hr3hr23。68
  3。31
  Male
  No
  Sun
  Dinner
  2hr4hr24。59
  3。61
  Female
  No
  Sun
  Dinner
  4hr5hr25。29
  4。71
  Male
  No
  Sun
  Dinner
  4hr6hr8。77
  2。00
  Male
  No
  Sun
  Dinner
  2hr7hr26。88
  3。12
  Male
  No
  Sun
  Dinner
  4hr8hr15。04
  1。96
  Male
  No
  Sun
  Dinner
  2hr9hr14。78
  3。23
  Male
  No
  Sun
  Dinner
  2hr10hr10。27
  1。71
  Male
  No
  Sun
  Dinner
  2hr11hr35。26
  5。00
  Female
  No
  Sun
  Dinner
  4hr12hr15。42
  1。57
  Male
  No
  Sun
  Dinner
  2hr13hr18。43
  3。00
  Male
  No
  Sun
  Dinner
  4hr14hr14。83
  3。02
  Female
  No
  Sun
  Dinner
  2hr15hr21。58
  3。92
  Male
  No
  Sun
  Dinner
  2hr16hr10。33
  1。67
  Female
  No
  Sun
  Dinner
  3hr17hr16。29
  3。71
  Male
  No
  Sun
  Dinner
  3hr18hr16。97
  3。50
  Female
  No
  Sun
  Dinner
  3hr19hr20。65
  3。35
  Male
  No
  Sat
  Dinner
  3hr20hr17。92
  4。08
  Male
  No
  Sat
  Dinner
  2hr21hr20。29
  2。75
  Female
  No
  Sat
  Dinner
  2hr22hr15。77
  2。23
  Female
  No
  Sat
  Dinner
  2hr23hr39。42
  7。58
  Male
  No
  Sat
  Dinner
  4hr24hr19。82
  3。18
  Male
  No
  Sat
  Dinner
  2hr25hr17。81
  2。34
  Male
  No
  Sat
  Dinner
  4hr26hr13。37
  2。00
  Male
  No
  Sat
  Dinner
  2hr27hr12。69
  2。00
  Male
  No
  Sat
  Dinner
  2hr28hr21。70
  4。30
  Male
  No
  Sat
  Dinner
  2hr29hr19。65
  3。00
  Female
  No
  Sat
  Dinner
  2hr。。。
  。。。
  。。。
  。。。
  。。。
  。。。
  。。。
  。。。
  214hr28。17
  6。50
  Female
  Yes
  Sat
  Dinner
  3hr215hr12。90
  1。10
  Female
  Yes
  Sat
  Dinner
  2hr216hr28。15
  3。00
  Male
  Yes
  Sat
  Dinner
  5hr217hr11。59
  1。50
  Male
  Yes
  Sat
  Dinner
  2hr218hr7。74
  1。44
  Male
  Yes
  Sat
  Dinner
  2hr219hr30。14
  3。09
  Female
  Yes
  Sat
  Dinner
  4hr220hr12。16
  2。20
  Male
  Yes
  Fri
  Lunch
  2hr221hr13。42
  3。48
  Female
  Yes
  Fri
  Lunch
  2hr222hr8。58
  1。92
  Male
  Yes
  Fri
  Lunch
  1hr223hr15。98
  3。00
  Female
  No
  Fri
  Lunch
  3hr224hr13。42
  1。58
  Male
  Yes
  Fri
  Lunch
  2hr225hr16。27
  2。50
  Female
  Yes
  Fri
  Lunch
  2hr226hr10。09
  2。00
  Female
  Yes
  Fri
  Lunch
  2hr227hr20。45
  3。00
  Male
  No
  Sat
  Dinner
  4hr228hr13。28
  2。72
  Male
  No
  Sat
  Dinner
  2hr229hr22。12
  2。88
  Female
  Yes
  Sat
  Dinner
  2hr230hr24。01
  2。00
  Male
  Yes
  Sat
  Dinner
  4hr231hr15。69
  3。00
  Male
  Yes
  Sat
  Dinner
  3hr232hr11。61
  3。39
  Male
  No
  Sat
  Dinner
  2hr233hr10。77
  1。47
  Male
  No
  Sat
  Dinner
  2hr234hr15。53
  3。00
  Male
  Yes
  Sat
  Dinner
  2hr235hr10。07
  1。25
  Male
  No
  Sat
  Dinner
  2hr236hr12。60
  1。00
  Male
  Yes
  Sat
  Dinner
  2hr237hr32。83
  1。17
  Male
  Yes
  Sat
  Dinner
  2hr238hr35。83
  4。67
  Female
  No
  Sat
  Dinner
  3hr239hr29。03
  5。92
  Male
  No
  Sat
  Dinner
  3hr240hr27。18
  2。00
  Female
  Yes
  Sat
  Dinner
  2hr241hr22。67
  2。00
  Male
  Yes
  Sat
  Dinner
  2hr242hr17。82
  1。75
  Male
  No
  Sat
  Dinner
  2hr243hr18。78
  3。00
  Female
  No
  Thur
  Dinner
  2hr244rows7columns分组运算transform方法
  In〔28〕:dfDataFrame(tips。groupby(sex)〔tip〕。mean())df
  Out〔28〕:
  tip
  sex
  Male
  3。089618
  Female
  2。833448
  In〔29〕:newtipspd。merge(tips,df,leftonsex,rightindexTrue)先聚合运算,然后再将其合并newtips。head()
  Out〔29〕:
  totalbill
  tipx
  sex
  smoker
  day
  time
  size
  tipy
  0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr2。833448
  4hr24。59
  3。61
  Female
  No
  Sun
  Dinner
  4hr2。833448
  11hr35。26
  5。00
  Female
  No
  Sun
  Dinner
  4hr2。833448
  14hr14。83
  3。02
  Female
  No
  Sun
  Dinner
  2hr2。833448
  16hr10。33
  1。67
  Female
  No
  Sun
  Dinner
  3hr2。833448
  In〔32〕:tips。groupby(sex)〔tip〕。transform(mean)transform方法可以使运算分布到每一行
  Out〔32〕:02。83344813。08961823。08961833。08961842。83344853。08961863。08961873。08961883。08961893。089618103。089618112。833448123。089618133。089618142。833448153。089618162。833448173。089618182。833448193。089618203。089618212。833448222。833448233。089618243。089618253。089618263。089618273。089618283。089618292。833448。。。2142。8334482152。8334482163。0896182173。0896182183。0896182192。8334482203。0896182212。8334482223。0896182232。8334482243。0896182252。8334482262。8334482273。0896182283。0896182292。8334482303。0896182313。0896182323。0896182333。0896182343。0896182353。0896182363。0896182373。0896182382。8334482393。0896182402。8334482413。0896182423。0896182432。833448Name:tip,Length:244,dtype:float64apply方法
  In〔10〕:deftop(x,n5):returnx。sortvalues(bytip,ascendingFalse)〔n:〕
  In〔11〕:tips。groupby(sex)。apply(top)
  Out〔11〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  sex
  Male
  43hr9。68
  1。32
  Male
  No
  Sun
  Dinner
  2hr235hr10。07
  1。25
  Male
  No
  Sat
  Dinner
  2hr75hr10。51
  1。25
  Male
  No
  Sat
  Dinner
  2hr237hr32。83
  1。17
  Male
  Yes
  Sat
  Dinner
  2hr236hr12。60
  1。00
  Male
  Yes
  Sat
  Dinner
  2hrFemale
  215hr12。90
  1。10
  Female
  Yes
  Sat
  Dinner
  2hr0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr111hr7。25
  1。00
  Female
  No
  Sat
  Dinner
  1hr67hr3。07
  1。00
  Female
  Yes
  Sat
  Dinner
  1hr92hr5。75
  1。00
  Female
  Yes
  Fri
  Dinner
  2hrIn〔12〕:tips。groupby(sex,groupkeysFalse)。apply(top)希望返回的结果不以分组键为索引,通过groupkeysFalse可以完成
  Out〔12〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  43hr9。68
  1。32
  Male
  No
  Sun
  Dinner
  2hr235hr10。07
  1。25
  Male
  No
  Sat
  Dinner
  2hr75hr10。51
  1。25
  Male
  No
  Sat
  Dinner
  2hr237hr32。83
  1。17
  Male
  Yes
  Sat
  Dinner
  2hr236hr12。60
  1。00
  Male
  Yes
  Sat
  Dinner
  2hr215hr12。90
  1。10
  Female
  Yes
  Sat
  Dinner
  2hr0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr111hr7。25
  1。00
  Female
  No
  Sat
  Dinner
  1hr67hr3。07
  1。00
  Female
  Yes
  Sat
  Dinner
  1hr92hr5。75
  1。00
  Female
  Yes
  Fri
  Dinner
  2hrIn〔18〕:data{name:〔张三,李四,peter,王五,小明,小红〕,sex:〔female,female,male,male,male,female〕,math:〔67,72,np。nan,82,90,np。nan〕}dfDataFrame(data)df〔math〕df〔math〕df
  Out〔18〕:
  math
  name
  sex
  0hr67。0
  张三
  female
  1hr72。0
  李四
  female
  2hrNaN
  peter
  male
  3hr82。0
  王五
  male
  4hr90。0
  小明
  male
  5hrNaN
  小红
  female
  In〔19〕:df。fillna(df〔math〕。mean())通过平均值对缺失值进行填充
  Out〔19〕:
  math
  name
  sex
  0hr67。00
  张三
  female
  1hr72。00
  李四
  female
  2hr77。75
  peter
  male
  3hr82。00
  王五
  male
  4hr90。00
  小明
  male
  5hr77。75
  小红
  female
  In〔20〕:flambdax:x。fillna(x。mean())lambda匿名函数,分组后,再进行插值df。groupby(sex)。apply(f)
  Out〔20〕:
  math
  name
  sex
  sex
  female
  0hr67。0
  张三
  female
  1hr72。0
  李四
  female
  5hr69。5
  小红
  female
  male
  2hr86。0
  peter
  male
  3hr82。0
  王五
  male
  4hr90。0
  小明
  male数据透视表透视表
  In〔25〕:tips。pivottable?查询数据透视表帮助文档
  In〔22〕:tips。pivottable(valuestip,indexsex,columnssmoker)value代表的是值,index为行,columns为例计算为平均值(默认)
  Out〔22〕:
  smoker
  Yes
  No
  sex
  Male
  3。051167
  3。113402
  Female
  2。931515
  2。773519
  In〔23〕:tips。pivottable(valuestip,indexsex,columnssmoker,aggfuncsum)aggfunc参数来指定计算方式
  Out〔23〕:
  smoker
  Yes
  No
  sex
  Male
  183。07
  302。00
  Female
  96。74
  149。77
  In〔24〕:tips。pivottable(valuestip,indexsex,columnssmoker,aggfuncsum,marginsTrue)margins分项小计
  Out〔24〕:
  smoker
  Yes
  No
  All
  sex
  Male
  183。07
  302。00
  485。07
  Female
  96。74
  149。77
  246。51
  All
  279。81
  451。77
  731。58交叉表交叉表是一种用于计算分组频率的特殊透视表
  In〔33〕:crosstablepd。crosstab(indextips〔day〕,columnstips〔size〕)crosstable
  Out〔33〕:
  size
  1hr2hr3hr4hr5hr6hrday
  Thur
  1hr48hr4hr5hr1hr3hrFri
  1hr16hr1hr1hr0hr0hrSat
  2hr53hr18hr13hr1hr0hrSun
  0hr39hr15hr18hr3hr1hrIn〔36〕:dfcrosstable。p(crosstable。sum(1),axis0)通过p函数,可以使得每行的和为1,频率百分比df
  Out〔36〕:
  size
  1hr2hr3hr4hr5hr6hrday
  Thur
  0。016129
  0。774194
  0。064516
  0。080645
  0。016129
  0。048387
  Fri
  0。052632
  0。842105
  0。052632
  0。052632
  0。000000
  0。000000
  Sat
  0。022989
  0。609195
  0。206897
  0。149425
  0。011494
  0。000000
  Sun
  0。000000
  0。513158
  0。197368
  0。236842
  0。039474
  0。013158
  In〔37〕:df。plot(kindbar,stackedTrue)柱形图通过stackedTrue可以绘制堆积图
  Out〔37〕:matplotlib。axes。subplots。AxesSubplotat0xb9a6080

有一种叫云南的生活云南高速公路服务区让人体验路上也是美丽风景依山而建,错落有致。初春的怒江美丽公路小沙坝服务区,在翠绿的江水衬托下格外秀丽;在昆安高速读书铺服务区,分布着国际卡丁车、汽摩运动公园、儿童娱乐区等多个项目和业态,不仅如此,服……相约安徽向春而行阜阳这条街火出圈,好吃又好玩好消息!阜阳文创街区,上新啦!继558文创园走红后,阜阳第二条文创街区U悦青年潮玩运动街区,自年前试运营以来,深受阜阳人喜爱,迅速成为新晋网红。文创街区,何以频繁出……周迅女神的尖头高跟鞋这一次给各位朋友们带来了女神周迅的尖头高跟鞋,由于现在图片不好找了,会少更新一点,大家喜欢的话多多帮忙转发和评论一下周迅高跟鞋头条创作挑战赛周迅女神身穿无袖露肩银色连衣裙……2023卫生健康预算支出金额,超出多个省份1年GDP(人民日报健康客户端记者杨晓露王圆)今年的国家账本上,医疗卫生和健康的投入持续加大。在全国一般公共预算支出中,卫生健康支出达到24211亿元,预算支出金额超出许多省份一年的GD……王宝强前妻马蓉现状,住豪华别墅,找平替猫砂,奢华中透着窘迫近日,王宝强前妻马蓉的消息频频传出。有人说她败光了离婚时分到的资产,沦落到骑电动车出行。还有人说她的生活依旧光鲜亮丽。虽然没了王宝强这个印钞机,但是她手里的钱不少,足够下半辈子……每天一个知识点头条创作挑战赛本文将介绍如何使用Python处理textThisisasentence。wordstext。split()print(words)……壹图集丨樱梅怒放!泰安高新区凤凰湖公园美若仙境记者李增浩薛小东冬去春来,梅香樱雅融春意,凤凰湖畔花又开。三月来临,泰安高新区凤凰湖公园里的梅花、早樱竞相开放,给绿油油的公园添了一笔重彩,不少市民穿梭在花海中,拿出手机记录下……这些饮料可能会引发痛风!你是不是每天都在喝?靓汤不能熬太久,否则嘌呤过高。火锅、啤酒也会增加体内的尿酸水平,容易诱发痛风。想必这是很多人都知道的生活常识。但除了这些,还有一个引发痛风的因素被很多人忽略了,那就是含糖饮料。……谷歌将推出Bard升级版OpenAI在意大利下线ChatGP太长不看版谷歌CEO称将推出Bard升级版中国语言文字数字博物馆正式开馆上线当时尚遇见元宇宙,华师大设计学院次元镜像时装秀登场联合国教科文组织呼吁尽快实……荣耀Magic5评测变轻了,也变强了!今年的世界移动通信大会(MWC)如期举行,跟去年一样,荣耀在大会开幕第一天就发布了今年的旗舰系列机型荣耀Magic5系列。如果说去年的Magic4系列是荣耀独立之后出海的第一步……34岁罗斯继1月1日后再登赛场,兰德尔赛后坦言他依旧有影响力北京时间2023年2月26日,NBA常规赛尼克斯对阵鹈鹕的比赛,锡安缺阵,尼克斯凭借兰德尔的出色发挥,帮助球队128106实现五连胜。德里克罗斯也在继1月1日后首次再度登上赛场……起床亲子英语口语表达核心词句wakeup(醒来)openyoureyes(睁开眼睛)getup(起床)timetogetup(该起床了)timetostretch(该……
中国00后百米一哥历史第4人有望超越苏神陈冠峰2000年生人,本科就读于上海体育学院。2017年进入广东省队训练,第一次进入大众视野是在2019年全国田径锦标赛,以创造自己当时pb10。54s获得决赛第4名,2020……库里最新伤病情况确定,勇士喜忧参半,科尔要发愁了在等待了1005天之后勇士终于迎来了库里、克莱、格林的再一次合体,他们也顺利赢下了与奇才的比赛,但是不曾想水花兄弟和格林合体仅打了一场,在对阵凯尔特人的比赛中库里和斯玛特在争抢……苹果春季发布会Mac是主角iPad值得买iPhone价格失望虽然苹果的秋季新品发布会是苹果每年最重磅的发布会,但随着苹果产品数量的增加,春季新品发布会的关注度也在逐渐提升,2022年的苹果春季新品发布会在3月9日凌晨2点正式上线,5款新……RNG战队砸手里图火了,PDD谈起诉原因,总负债太多没人买了2022电竞季前言:S12赛季的比赛已经接近尾声了,相信绝大多数的玩家都关注了最近一段时间的对抗,现在仅剩下四支战队来争夺最后的冠军,lpl赛区只有jdg战队还在比赛。从目前的……六部门联合印发通知可延长至明年6月底中国人民银行等六部门14日发布通知明确,对于2022年第四季度到期的、因新冠肺炎疫情影响暂时遇困的小微企业贷款(含个体工商户和小微企业主经营性贷款),还本付息日期原则上最长可延……00后妹子晒街头卖唱记录,自曝过去1年每天被骚扰,网友坐不住当越来越多的年轻人,都开始把玩网络游戏,当成平时休闲娱乐的第一选择时,各种不同类型的网游玩家,也开始频频出现在各大热门网游当中!有的人,喜欢钻研PVP、PVE玩法,试图通过自己……科比20年生涯轰下431次30排历史第五,那么前四是哪些大神科比作为新世纪最强得分手,创造过单场81分奇迹的人,得分如同探囊取物,他20年职业生涯轰下431次30,然而放眼历史却仅仅只排在第五位,那前四都是哪些大神呢,接下来就有答案。……取暖神器热销欧洲的背后,股市释放了什么信号这两天看新闻,就觉得不太对劲,果然事出反常必有妖。小时候,家里有块韭菜地,每次下雨,韭菜就躺平一片,不是很好割。以为躺平我就割不到了?图样图森破。家里人告诉我,不要……沃尔夫FIA处理大问题透明公开毫不羞怯ampampquot梅赛德斯领队托托沃尔夫赞扬国际汽联在处理诸如最近铃鹿起重机事件调查等重大问题时表现出的绝对透明和毫不避讳。在上个月的日本大奖赛中,由于车手对暴雨里起重车出现在赛道上表示愤……最浪漫的地方法国法国是一个浪漫的国度,现在就让我们去认识一下它吧1。法国是欧洲西部的国家,包括科西加等岛屿,面积为55万k。2。巴黎是世界上最繁华的大都市之一,每年有大量的人奔赴巴……2022乐山非遗精品旅游线路五沙非遗鉴赏之旅行程安排:战时故宫博物馆五通桥中国根书艺术馆西坝镇豆腐宴沙湾郭沫若故居沫若戏剧文创园。用一天的时间去品味戏剧,品尝西坝豆腐、钵钵鸡、麻辣烫等非遗美食。早上从市中区出发,途……五台山龙泉寺犹如一个民国精品石雕展头条创作挑战赛那天一早我们驾车从台怀镇出来,走西线,沿途有龙泉寺、竹林寺、金阁寺和清凉寺。我们先去龙泉寺。来看龙泉寺主要是其为五台山十大寺庙之一。同时,是五台山世遗的十个……
友情链接:易事利快生活快传网聚热点七猫云快好知快百科中准网快好找文好找中准网快软网